Skip Nav Destination
Close Modal
Search Results for
continuum modeling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 216
Search Results for continuum modeling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005531
EISBN: 978-1-62708-197-9
... in the modeling of PM processes. It describes the PM process in terms of powder compaction and sintering. The article schematically illustrates powder injection molding for the production of plastic parts and describes PM process models such as discrete-element model (DEM), linear continuum model, and nonlinear...
Abstract
Power metallurgy (PM) is a process of shaping metal powders into near-net or net shape parts combined with densification or consolidation processes for the development of final material and design properties. This article introduces the general considerations, models, and applications in the modeling of PM processes. It describes the PM process in terms of powder compaction and sintering. The article schematically illustrates powder injection molding for the production of plastic parts and describes PM process models such as discrete-element model (DEM), linear continuum model, and nonlinear continuum model. It concludes with information on the application of press and sinter modeling to practical problems in PM.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006033
EISBN: 978-1-62708-175-7
... Abstract This article discusses continuum modeling, which is the most relevant approach in modeling grain growth, densification, and deformation during sintering. Continuum plasticity models are frequently used to describe the mechanical response of metal powders during compaction. The article...
Abstract
This article discusses continuum modeling, which is the most relevant approach in modeling grain growth, densification, and deformation during sintering. Continuum plasticity models are frequently used to describe the mechanical response of metal powders during compaction. The article illustrates the typical procedure for computer simulation for press and sinter process. It describes the procedure to obtain the material properties based on the generalized Shima-Oyane model. The article presents a wide variety of tests, accounting for data on the grain growth, densification, and distortion where these data help in the development of a constitutive model for sintering simulation. Finally, the article provides information on the simulation approaches used to optimize die compaction and sintering.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005520
EISBN: 978-1-62708-197-9
... both the benefits and drawbacks of each class. These classes include criteria functions, analytical models, continuum models, and kinetic models. The article also tabulates the criteria functions for porosity prediction. mechanical properties porosity solidification THE SOLIDIFICATION...
Abstract
There is a need for models that predict the percentage and size of porosity formed during solidification in order to effectively predict mechanical properties. This article provides an overview of equations that govern pore formation. It reviews the four classes of models, highlighting both the benefits and drawbacks of each class. These classes include criteria functions, analytical models, continuum models, and kinetic models. The article also tabulates the criteria functions for porosity prediction.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005237
EISBN: 978-1-62708-187-0
... Abstract In order to model macrosegregation, one must consider convection and the partitioning of segregating elements at the dendritic length scale. This article describes microsegregation with diffusion in the solid. It presents a continuum model of macrosegregation and illustrates...
Abstract
In order to model macrosegregation, one must consider convection and the partitioning of segregating elements at the dendritic length scale. This article describes microsegregation with diffusion in the solid. It presents a continuum model of macrosegregation and illustrates the simulation of macrosegregation and microsegregation.
Image
Published: 01 December 2009
Fig. 9 Simulation of growth of supercritical semicoherent (internally twinned) martensitic embryo in nonlinear, nonlocal continuum model. Source: Ref 53
More
Image
in Microstructure-Sensitive Modeling and Simulation of Fatigue
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 15 Domain decomposition of fatigue damage process zone at tip of a fatigue crack, indicating domains for atomistics, discrete dislocations, and continuum models
More
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006546
EISBN: 978-1-62708-290-7
... behavior within particles. The third section on vat photopolymerization (VPP) discusses two primary approaches to modeling VPP processes, namely a lumped-parameter approach to estimate cured regions in the vat, known as the Jacobs model, and a high-fidelity, continuum approach that uses finite-element...
Abstract
This article focuses on four industrial additive manufacturing approaches that are used to create polymer parts. The first section focuses on material extrusion, providing information on lumped-parameter material flow models and higher-fidelity models developed to estimate temperature distribution. The second section covers polymer powder-bed sintering/ fusion, discussing the different levels of scale used to address modeling and the impact of process settings: thermodynamics at the powder-bed surface, consolidation of adjacent particles in the fusion process, and fusion and molecular-level behavior within particles. The third section on vat photopolymerization (VPP) discusses two primary approaches to modeling VPP processes, namely a lumped-parameter approach to estimate cured regions in the vat, known as the Jacobs model, and a high-fidelity, continuum approach that uses finite-element methods. The final section is devoted to material jetting, focusing on simulations used to study droplet generation at the nozzle and droplet impact.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005502
EISBN: 978-1-62708-197-9
... Abstract This article presents the governing equations and methodologies to model the press and sinter powder metallurgy, including continuum, micromechanical, multiparticle, and molecular dynamics approaches. It describes the constitutive relation for compaction and sintering. The article...
Abstract
This article presents the governing equations and methodologies to model the press and sinter powder metallurgy, including continuum, micromechanical, multiparticle, and molecular dynamics approaches. It describes the constitutive relation for compaction and sintering. The article discusses the experimental determination of material properties and simulation verification for compaction and sintering. It reviews the use of modeling and simulation of press and sinter powder metallurgy, including gravitational distorting in sintering, compaction optimization, sintering optimization, and coupled press and sinter optimization.
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005431
EISBN: 978-1-62708-196-2
... methods. This article introduces the methods of so-called meshed solutions, with an emphasis on the FEM. It presents some basic differential equations that are used to model the responses of structures, components, processes, or systems with emphasis on continuum mechanics. The article provides an outline...
Abstract
Several methods are developed for the numerical solution of partial differential equations, namely, meshed-solution methods such as the finite-element method (FEM), finite-difference method, and boundary-element method; and numerical algorithms consisting of so-called meshed-solution methods. This article introduces the methods of so-called meshed solutions, with an emphasis on the FEM. It presents some basic differential equations that are used to model the responses of structures, components, processes, or systems with emphasis on continuum mechanics. The article provides an outline on the mathematical principles of solving differential equations. It also reviews linear structural problems to illustrate the concept of the FEMs.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005424
EISBN: 978-1-62708-196-2
... interactions of hundreds to tens of thousands of crystals can be modeled in this way. However, modeling thousands of crystals still accounts for only a small piece of material, and ultimately, the practical application of polycrystal modeling is at the larger, continuum scale. This is the scale of actual...
Abstract
This article provides an explanation on how crystal plasticity is implemented within finite element formulations by the use of physical length scales: crystal scale and continuum scale. It provides theoretical formulations for kinematic framework for deforming crystals and polycrystals, elastic and plastic behaviors of single crystals, refinements to the single-crystal constitutive, and crystal-scale finite-element. The article also presents examples that illustrate the capabilities of the formulations at the length scales.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002172
EISBN: 978-1-62708-188-7
... Abstract This article discusses the mechanics of chip formation and reviews the analytical modeling of the chip formation process by high-speed machining within the framework of continuum mechanics. It examines the relationship between the various high-speed machining parameters. The article...
Abstract
This article discusses the mechanics of chip formation and reviews the analytical modeling of the chip formation process by high-speed machining within the framework of continuum mechanics. It examines the relationship between the various high-speed machining parameters. The article describes the cutting tool systems for aluminum alloys, steel, superalloys, and titanium alloys and provides an overview of the alternative cutting tool geometries for increasing tool life. It highlights the factors considered by companies planning to employ high-speed machining systems and concludes with information on the applications of high-speed machining.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005418
EISBN: 978-1-62708-196-2
... Abstract Self-consistent models are a particular class of models in continuum micromechanics, that is, the field concerned with making predictions of the properties and evolution of aggregates whose single-crystal deformation behavior is known. This article provides information...
Abstract
Self-consistent models are a particular class of models in continuum micromechanics, that is, the field concerned with making predictions of the properties and evolution of aggregates whose single-crystal deformation behavior is known. This article provides information on the measurement and representation of textures as well as prediction of texture evolution in single-phase materials and two-phase aggregates.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005581
EISBN: 978-1-62708-174-0
... Abstract Plastic deformation of one or both metals is required to obtain bonding in cold welding. This article presents a theoretical model, to explain the bond strength, based on metallographic studies and continuum mechanical analysis of the local plastic deformation in the weld interface...
Abstract
Plastic deformation of one or both metals is required to obtain bonding in cold welding. This article presents a theoretical model, to explain the bond strength, based on metallographic studies and continuum mechanical analysis of the local plastic deformation in the weld interface. It describes the bonding mechanisms, with illustrations. The article discusses the alternative methods of surface preparation and quality control of the weld interface of a cold weld. It concludes with a description of a variety of metal-forming processes suitable for production of cold welds, namely, rolling, indentation, butt welding, extrusion, and shear welding.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005525
EISBN: 978-1-62708-197-9
... in composition. While one can solve the previous transport equations numerically, it is useful to use a scaling analysis to quantify quickly, to at least an order of magnitude, certain gross parameters in the process. A complete continuum mixture model of the flows in direct chill (DC) casting can be found...
Abstract
This article presents conservation equations for heat, species, mass, and momentum to predict transport phenomena during solidification processing. It presents transport equations and several examples of their applications to illustrate the physics present in alloy solidification. The examples demonstrate the utility of scaling analysis to explain the fundamental physics in a process and to demonstrate the limitations of simplifying assumptions. The article concludes with information on the solidification behavior of alloys as predicted by full numerical solutions of the transport equations.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002443
EISBN: 978-1-62708-194-8
... procedure for solving structural problems based on the principle of virtual work. The article discusses continuum elements, such as hexahedra, pentahedra, tetrahedra, quadrilaterals, and triangles, commonly used in three- or two-dimensional domains. It considers structural elements such as beam element...
Abstract
Finite element analysis is a computer-based numerical method for solving engineering problems in bodies of user-defined geometry. This article introduces the important issues of finite elements (especially accuracy and efficiency) in a nonacademic manner. It describes the Rayleigh-Ritz procedure for solving structural problems based on the principle of virtual work. The article discusses continuum elements, such as hexahedra, pentahedra, tetrahedra, quadrilaterals, and triangles, commonly used in three- or two-dimensional domains. It considers structural elements such as beam element, plate element, shell element, and elbow element. The article presents three examples to illustrate the types of problems that can be addressed and the decisions that must be made when using finite element analysis.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005544
EISBN: 978-1-62708-197-9
... multicomponent thermodynamics and mobility in its precipitation models to allow realistic and mechanistic modeling on nucleation, growth, and coarsening. QuesTek http://www.questek.com Part-level finite-element analysis, finite difference, and other continuum models Table 9 Part-level finite-element...
Abstract
This article demonstrates the depth and breadth of commercial and third-party software packages available to simulate metals processes. It provides a representation of the spectrum of applications from simulation of atomic-level effects to manufacturing optimization. The article tabulates the software name, function or process applications, vendor or developer, and website information.
Image
in Crystal-Scale Simulations Using Finite-Element Formulations
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 1 Schematic diagrams indicating the characteristic sizes of crystals relative to the entire body being modeled. (a) Crystal scale. (b) Continuum scale
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005234
EISBN: 978-1-62708-187-0
..., an additional outer iteration in a time step will be required to recalculate discrete forms of the governing equations in light of the updated values from the inner iterations. A Comment on Two-Phase Modeling The continuum mixture models just described treat the entire domain as one phase and predict...
Abstract
This article examines the critical features of four key areas of modeling transport phenomena associated with casting processes. These include heat and species transport in a metal alloy, flow of the liquid metal, tracking of the free metal-gas surface, and inducement of metal flow via electromagnetic fields. Conservation equations that represent important physical phenomena during casting processes are presented. The article provides a discussion on how the physical phenomena can be solved. It provides information on a well-established array of general and specific computational tools that can be readily applied to modeling casting processes. The article also summarizes the key features of the conservation equations in these tools.
Image
in Monte Carlo Models for Grain Growth and Recrystallization
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 5 Relationship between boundary energy and node angle. (a) Continuum system. (b) Monte Carlo Potts model. Each grain orientation is represented by a different gray scale; the boundaries are sharp, being implicitly defined between sites of different orientations. (c) Implementation
More
1