Skip Nav Destination
Close Modal
Search Results for
continuous precipitation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 398 Search Results for
continuous precipitation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001270
EISBN: 978-1-62708-170-2
... Abstract This article discusses the processes involved in continuous hotdip coating of steel sheets, namely, hot and cold line processing, surface preparation, and post treatment. It outlines the properties and microstructures of metals and their alloys used in this process. The coatings...
Abstract
This article discusses the processes involved in continuous hotdip coating of steel sheets, namely, hot and cold line processing, surface preparation, and post treatment. It outlines the properties and microstructures of metals and their alloys used in this process. The coatings considered in this article include metal coatings, such as zinc coatings, and alloy coatings, such as zinc-iron, types 1 and 2 aluminum, Zn-5AI, Zn-55AI, and lead-tin coatings.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005288
EISBN: 978-1-62708-187-0
... produce a repetitive series of oval-to-round reductions. In the continuous casting of ETP copper with oxygen content in the melt of approximately 400 ppm, the dissolved oxygen reacts with the impurities present during solidification, precipitating these out of the solid solution and resulting in...
Abstract
This article reviews the history and methods of copper alloy continuous casting. The methods include vertical continuous casting and horizontal continuous casting. The article discusses the upcasting methods used in vertical continuous casting and strip casting used in horizontal continuous casting. The upcasting methods include Outokumpu upcasting method, Rautomead upwards vertical casting, and pressure upcasting. The article also describes the methods and processes of wheel casting and Ohno continuous casting.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005296
EISBN: 978-1-62708-187-0
... Abstract This article outlines the advantages of the steel continuous casting, along with its developments and challenges for improvement. It describes the process of the steel continuous casting. The article provides a description of the design and layout of a steelmaking facility for...
Abstract
This article outlines the advantages of the steel continuous casting, along with its developments and challenges for improvement. It describes the process of the steel continuous casting. The article provides a description of the design and layout of a steelmaking facility for continuous casting of steel. It reviews the trends in the steel industry, such as near-net shape casting, the use of tundish metallurgy, and pouring stream protection. The article discusses the use and capabilities of different molds for steel continuous casting. These include thin-wall tube-type molds, solid molds, and plate molds. The article explains the operations for productivity improvements and quality improvements in steel continuous casting. It reviews the applications of horizontal continuous casting in casting steel. An emphasis on the development of continuous casting depending on control systems and automation, with the objective of maintaining high quality and high productivity, is also provided.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000612
EISBN: 978-1-62708-181-8
... Abstract This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of precipitation-hardening stainless steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the cup-and-cone tension-overload...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of precipitation-hardening stainless steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the cup-and-cone tension-overload fracture, low-cycle and high-cycle fatigue fracture, fracture surface, brittle intergranular fracture, hydrogen embrittlement, and intergranular stress-corrosion cracking of stainless steel components of these steels. The components include high-pressure compressor parts, springs, deflector yokes of aircraft main landing gears, and aircraft engine mount beams.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006287
EISBN: 978-1-62708-169-6
..., zirconium, chromium, vanadium, scandium, nickel, tin, and bismuth. The article discusses the secondary phases in aluminum alloys, namely, nonmetallic inclusions, porosity, primary particles, constituent particles, dispersoids, precipitates, grain and dislocation structure, and crystallographic texture. It...
Abstract
This article describes the general categories and metallurgy of heat treatable aluminum alloys. It briefly reviews the key impurities and each of the principal alloying elements in aluminum alloys, namely, copper, magnesium, manganese, silicon, zinc, iron, lithium, titanium, boron, zirconium, chromium, vanadium, scandium, nickel, tin, and bismuth. The article discusses the secondary phases in aluminum alloys, namely, nonmetallic inclusions, porosity, primary particles, constituent particles, dispersoids, precipitates, grain and dislocation structure, and crystallographic texture. It also discusses the mechanisms used for strengthening aluminum alloys, including solid-solution hardening, grain-size strengthening, work or strain hardening, and precipitation hardening. The process of precipitation hardening involves solution heat treatment, quenching, and subsequent aging of the as-quenched supersaturated solid solution. The article briefly discusses these processes of precipitation hardening. It also reviews precipitation in various alloy systems, including 2xxx, 6xxx, 7xxx, aluminum-lithium, and Al-Mg-Li systems.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006272
EISBN: 978-1-62708-169-6
... Abstract This article discusses the various methods for evaluating the quench sensitivity of aluminum alloys, namely, time-temperature-property diagrams, the quench factor analysis, the Jominy end-quench method, and continuous-cooling precipitation diagrams. It briefly describes the procedures...
Abstract
This article discusses the various methods for evaluating the quench sensitivity of aluminum alloys, namely, time-temperature-property diagrams, the quench factor analysis, the Jominy end-quench method, and continuous-cooling precipitation diagrams. It briefly describes the procedures, applications, advantages, and limitations of these methods.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006276
EISBN: 978-1-62708-169-6
... increases continuously with time until some maximum is reached, normally in the fully precipitated condition. The optimum condition generally preferred results from a precipitation treatment of temperature and duration just beyond those that correspond to the hardness aging peak. Cold working prior to...
Abstract
This article provides information on the Unified Numbering System designations and temper designations of copper and copper alloys. It discusses the basic types of heat treating processes of copper and copper alloys, namely, homogenizing, annealing, and stress relieving, and hardening treatments such as precipitation hardening, spinodal hardening, order hardening, and quench hardening and tempering. The article presents tables that list the compositions and mechanical properties of copper alloys. It also discusses two strengthening mechanisms of copper alloys, solid-solution strengthening and work hardening. Finally, the article provides information on the equipment used for the heat treating of copper and copper alloys, including batch-type atmosphere furnaces, continuous atmosphere furnaces, and salt baths.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006268
EISBN: 978-1-62708-169-6
... to an increase of strength. The clusters are metastable and continue to evolve into other precipitates, the composition, size, shape, and crystal structure of which may differ. The transition between different types of precipitates may be a gradual transformation via exchange of atoms on specific...
Abstract
This article describes the effects of alloying and heat treatment on the metastable transition precipitates that occur in age hardenable aluminum alloys. Early precipitation stages are less well understood than later ones. This article details the aging sequence and characteristics of precipitates that occur in the natural aging and artificial aging of Al-Mg-Si-(Cu) alloys, Al-Mg-Cu alloys, microalloyed Al-Mg-Cu-(Ag, Si) alloys, aluminum-lithium-base alloys, and Al-Zn-Mg-(Cu) alloys. Crystal structure, composition, dimensions, and aging conditions of precipitates are detailed. Effects of reversion, duplex annealing, and retrogression and re-aging are included.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003031
EISBN: 978-1-62708-200-6
... Abstract This article discusses the types, properties, and uses of continuous-fiber-reinforced composites, including glass, carbon, aramid, boron, continuous silicon carbide, and aluminum oxide fiber composites. While polyester and vinyl ester resins are the most used matrix materials for...
Abstract
This article discusses the types, properties, and uses of continuous-fiber-reinforced composites, including glass, carbon, aramid, boron, continuous silicon carbide, and aluminum oxide fiber composites. While polyester and vinyl ester resins are the most used matrix materials for commercial applications, epoxy resins, bismaleimide resins, polyimide resins, and thermoplastic resins are used for aerospace applications. The article addresses design considerations as well as product forms and fabrication processes.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003195
EISBN: 978-1-62708-199-3
... Abstract This article presents an outline of the physical metallurgical principles that are associated with heat treating of steels. It describes the iron-carbon phase diagram and various types of transformation diagrams, including isothermal transformation diagrams, continuous heating...
Abstract
This article presents an outline of the physical metallurgical principles that are associated with heat treating of steels. It describes the iron-carbon phase diagram and various types of transformation diagrams, including isothermal transformation diagrams, continuous heating transformation diagrams, and continuous cooling transformation diagrams. The primary design criteria for heat treating of steels this article covers are the minimization of distortion and undesirable residual stresses. The article presents the theoretical and empirical guidelines to understand sources of common heat-treating defects and how they can be controlled. It also presents an example to demonstrate how thermal and transformation-induced strains cause dimensional changes and residual stresses.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005197
EISBN: 978-1-62708-187-0
... Abstract In high-iron-tonnage operations, the cupola remains the most efficient source of continuous high volumes of iron needed to satisfy high production foundries or the multiple casting machines of centrifugal pipe producers. This article explores successful improvement technologies in...
Abstract
In high-iron-tonnage operations, the cupola remains the most efficient source of continuous high volumes of iron needed to satisfy high production foundries or the multiple casting machines of centrifugal pipe producers. This article explores successful improvement technologies in cupola equipment, including preheated air blast, recuperative hot blast systems, and duplex electric holders. It discusses the shell, intermittent or continuous tapping, tuyere and blower systems, refractory lining, water-cooled cupolas, emission-control systems, and storage and handling of the charge materials. The article provides a discussion on control tests for cupola, including the chill test and mechanical test. It concludes with information on specialized cupolas such as cokeless cupola and plasma-fired cupola.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006258
EISBN: 978-1-62708-169-6
... crack is observed to propagate along the grain boundaries through the fracture of brittle β-phase precipitates. Heat treatment to redistribute these precipitates and break the continuous network is required to improve the properties of such composite materials. Fig. 10 Magnesium alloy AZ91D-SiC...
Abstract
Magnesium-matrix composites (MgMCs) are very promising as structural materials because of their low density, high specific strength, and excellent castability. This article provides information on the characteristics, mechanical properties, and applications of magnesium alloys and composites. It discusses the microstructures used for the most common magnesium alloys used in metal-matrix composites, namely, magnesium-aluminum, magnesium-rare earth and magnesium-lithium alloys. The article focuses on the most common methods of heat treatment, including solution heat treatment, precipitation strengthening or aging, and annealing, applied to these alloys. Finally, it describes the microstructural aspects and precipitate-matrix relationships of MgMCs as well as the heat treatment methods for MgMCs.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
... similar to that for the binary magnesium-aluminum alloys, precipitation can occur continuously and discontinuously. The amount of discontinuous precipitate depends on the cooling rate from the solution temperature and affects the mechanical properties, as illustrated in Fig. 9 . Higher cooling rates...
Abstract
This article describes the different types of precipitation and transformation processes and their effects that can occur during heat treatment of various nonferrous alloys. The nonferrous alloys are aluminum alloys, copper alloys, magnesium alloys, nickel alloys, titanium alloys, cobalt alloys, zinc alloys, and heat treatable silver alloys, gold alloys, lead alloys, and tin alloys. It also provides a detailed discussion on the effects due to precipitation and transformation processes in these non-ferrous alloys.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005410
EISBN: 978-1-62708-196-2
... phase where heterophase fluctuations occur. Some of these fluctuations reach a large enough size that they can continue to grow and lead to the formation of precipitates. The nucleating system is thus envisioned mainly from a thermodynamic viewpoint. The key controlling parameters are the nucleation...
Abstract
This article describes the results obtained by Volmer, Weber, Farkas, Becker, and Doring, which constitute the classical nucleation theory. These results are the predictions of the precipitate size distribution, steady-state nucleation rate, and incubation time. The article reviews a nucleating system as a homogeneous phase using the classical nucleation theory, along with heterophase fluctuations that led to the formation of precipitates. It discusses the gas cluster dynamics using the kinetic approach to describe nucleation. The article presents key parameters, such as cluster condensation and evaporation rates, to describe the time evolution of the system. The predictions and extensions of the classical nucleation theory are discussed. The article also provides the limitations of classical nucleation theories in cluster dynamics.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003203
EISBN: 978-1-62708-199-3
... different types of stainless steels such as austenitic, ferritic, duplex, martensitic, and precipitation-hardening, and on the heat treatment of superalloys and refractory metals. It discusses the recommended procedures for solution annealing, austenite conditioning, transformation cooling, and age...
Abstract
Heat treating of stainless steel produces changes in physical condition, mechanical properties, and residual stress level and restores maximum corrosion resistance when that property has been adversely affected by previous fabrication or heating. This article focuses on annealing of different types of stainless steels such as austenitic, ferritic, duplex, martensitic, and precipitation-hardening, and on the heat treatment of superalloys and refractory metals. It discusses the recommended procedures for solution annealing, austenite conditioning, transformation cooling, and age tempering of precipitation-hardening stainless steels. The article also lists general recommendations for the annealing temperatures of tantalum, niobium, molybdenum, tungsten, and their alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006266
EISBN: 978-1-62708-169-6
..., manufacturing operations were impeded from efficient operation by the need to continually adjust heat treatment conditions for each new alloy/component that came through the production line. Precipitation heat treatments were identified as a principal cause of economic problems in manufacturing. Consequently...
Abstract
Cast nickel-base alloys are used extensively in corrosive-media and high-temperature applications. This article briefly reviews the common types of heat treatments of nickel alloy castings: homogenization, stress relieving, in-process annealing, full annealing, solution annealing, quenching, coating diffusion, and precipitation. It describes the three general strengthening mechanisms, namely, solid-solution hardening, age hardening, and carbide precipitation. The article summarizes the typical heat treatment of the general families of nickel-base castings used in industrial applications. It focuses on the solution treatment and age hardening of cast nickel-base superalloys and the heat treatment of cast solid-solution alloys for corrosion-resisting applications. The article also discusses the typical types of atmospheres used in annealing or solution treating: exothermic, endothermic, dry hydrogen, dry argon, and vacuum.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006252
EISBN: 978-1-62708-169-6
... precipitation-hardened alloys. It examines the consequences of aging treatments on the residual stress, namely, annealing, precipitation heat treatment, and cryogenic treatment. The article provides information on uphill quenching, which attempts to reverse thermal gradients encountered during quenching. It...
Abstract
The presence of macroscopic residual stresses in heat treatable aluminum alloys can give rise to machining distortion, dimensional instability, and increased susceptibility to in-service fatigue and stress-corrosion cracking. This article details the residual-stress magnitudes and distributions introduced into aluminum alloys by thermal operations associated with heat treatment. The available technologies by which residual stresses in aluminum alloys can be relieved are also described. The article shows why thermal stress relief is not a feasible stress-reduction technology for precipitation-hardened alloys. It examines the consequences of aging treatments on the residual stress, namely, annealing, precipitation heat treatment, and cryogenic treatment. The article provides information on uphill quenching, which attempts to reverse thermal gradients encountered during quenching. It examines how quench-induced residual stresses in heat treatable aluminum alloys are reduced when sufficient load is applied to cause plastic deformation. The article also shows how plastic deformation reduces residual stress.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005335
EISBN: 978-1-62708-187-0
... continuous casting process. It provides information on castability and quality of the casted alloys. The article details postcasting treatment, including heat treatment, hot isostatic pressing, and coatings. It summarizes the applications of cast cobalt alloys. cast cobalt alloys castability coatings...
Abstract
This article discusses the physical metallurgy of cast cobalt alloys with emphasis on crystallography, compositions, phases and microstructure, and properties. Cobalt alloys are cast by several different foundry methods. The article describes the argon-oxygen decarburization and continuous casting process. It provides information on castability and quality of the casted alloys. The article details postcasting treatment, including heat treatment, hot isostatic pressing, and coatings. It summarizes the applications of cast cobalt alloys.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003989
EISBN: 978-1-62708-185-6
... workability, because such large-grained structures can be crack prone. In addition, grain-boundary precipitates may form as the ingot is cooled from homogenization to the final forging temperature. A large grain structure with relatively few grain boundaries may result in a continuous precipitate in the grain...
Abstract
This article describes the presses, transportation equipment, and manufacturing processes associated with cogging. It discusses the practical and metallurgical issues encountered during the conversion of ingot to billet. The article explains the use of numerical modeling as part of the continuing efforts to reduce the cost and time associated with developing new cogging sequences, increase the yield, make the processes more robust, and increase the quality of the produced product.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003091
EISBN: 978-1-62708-199-3
... of various steel manufacturing processes, such as ingot casting, continuous casting, and hot rolling. It provides an outline of specialized processing routes of producing ultralow plain carbon steels, interstitial-free steels, high strength low-alloy steels, ultrahigh strength steels, stainless...
Abstract
This article presents a detailed account on the process flow, composition, alternative sources, and the advancement of ironmaking, steelmaking and secondary steelmaking practices. Some steels, such as bearing steels, heat-resistant steels, ultrahigh strength missile and aircraft steels, and rotor steels have higher quality requirements and tighter composition control than plain carbon or ordinary low-alloy steels. The production of special-quality steels requires vacuum-based induction or electric remelting and refining capabilities. The article explores the types and characteristics of various steel manufacturing processes, such as ingot casting, continuous casting, and hot rolling. It provides an outline of specialized processing routes of producing ultralow plain carbon steels, interstitial-free steels, high strength low-alloy steels, ultrahigh strength steels, stainless steels, and cold-rolled products, and briefly explains the analytical techniques for liquid steels.