Skip Nav Destination
Close Modal
Search Results for
continuous fiber-reinforced ceramic matrix composites
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 262 Search Results for
continuous fiber-reinforced ceramic matrix composites
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003469
EISBN: 978-1-62708-195-5
... Abstract Interpretation of failures of ceramic-matrix composites, and in particular continuous fiber reinforced ceramic-matrix composites is complicated by the complex structure of the composite material. This article describes the failure characteristics and evidence of failure mechanisms...
Abstract
Interpretation of failures of ceramic-matrix composites, and in particular continuous fiber reinforced ceramic-matrix composites is complicated by the complex structure of the composite material. This article describes the failure characteristics and evidence of failure mechanisms of these composites, with illustrations.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003449
EISBN: 978-1-62708-195-5
... Abstract This article discusses the mechanisms for enhancing the reliability of three types of ceramic-matrix composites: discontinuously reinforced ceramic-matrix composites, continuous fiber ceramic composites, and carbon-carbon composites. It also presents examples of their mechanical...
Abstract
This article discusses the mechanisms for enhancing the reliability of three types of ceramic-matrix composites: discontinuously reinforced ceramic-matrix composites, continuous fiber ceramic composites, and carbon-carbon composites. It also presents examples of their mechanical and physical properties. Examples that illustrate the properties of commercially available materials are also provided.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003357
EISBN: 978-1-62708-195-5
... – 65 2. DiCarlo J.A. and Dutta S. , Continuous Ceramic Fibers for Ceramic Composites , Handbook On Continuous Fiber Reinforced Ceramic Matrix Composites , Lehman R. , El-Rahaiby S. , and Wachtman J. Jr. , Ed., CIAC, Purdue University , West Lafayette, Indiana...
Abstract
This article focuses on the production methods, properties, and applications of two main types of commercially available continuous-length ceramic fibers, namely, oxide fibers based on the alumina-silica system and on alpha-alumina, and nonoxide fibers based primarily on beta-phase silicon carbide. It provides a discussion on factors that are considered in understanding thermostructural capability of ceramic fiber for high-temperature ceramic-matrix composites (CMC) applications. The article tabulates other commercial oxide and nonoxide fiber types for CMC reinforcement.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003486
EISBN: 978-1-62708-195-5
.... This article provides examples for these four categories, with an emphasis on those applications/materials that have achieved commercial viability. The applications for continuous fiber ceramic composites are also summarized. aerospace and military applications continuous fiber-reinforced ceramic matrix...
Abstract
The applications of discontinuously reinforced ceramic-matrix composites (CMCs) fall into four major categories, namely, cutting tool inserts; wear-resistant parts; aerospace and military applications; and other industrial applications, including engines and energy-related applications. This article provides examples for these four categories, with an emphasis on those applications/materials that have achieved commercial viability. The applications for continuous fiber ceramic composites are also summarized.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003311
EISBN: 978-1-62708-176-4
..., depending on fiber length and fiber volume fraction. The interface condition also strongly affects the value of J c ( Ref 64 ). Table 3 shows a wide range of J c values for continuous woven Nicalon fiber fabric-reinforced SiC matrix composites produced by chemical vapor infiltration. In Table 3...
Abstract
This article introduces the concepts of linear-elastic fracture mechanics (LEFM) and elastic-plastic fracture mechanics (EPFM). It reviews the fracture mechanics of ceramics and ceramic matrix composites (CMCs). The article describes some fracture toughness measurement techniques used on ceramics and CMCs: single edge notch bending, compact tension, double cantilever beam testing, chevron notch methods, and double torsion. It presents descriptions organized by their specimen types, and includes the advantages and disadvantages, as well as the experimental control schemes employed for each specimen type.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003063
EISBN: 978-1-62708-200-6
... summarizes the properties of various ceramic reinforcements and industrial applications of these composites. ceramic reinforcements ceramic-matrix composites composite processing composite testing methods continuous-fiber-reinforced composites discontinuously reinforced composites high...
Abstract
Ceramic-matrix composites (CMCs) are being developed for a number of high-temperature and high-performance applications in industrial, aerospace, and energy conservation sectors. This article focuses on processing, fabrication, testing, and characterization methods of CMCs, namely, discontinuously reinforced composites and continuous-fiber-reinforced composites. Processing methods include cold pressing, sintering, hot pressing, reaction bonding, melt infiltration, directed metal oxidation, sol-gel and polymer pyrolysis, self-propagating high-temperature synthesis and joining. A table summarizes the properties of various ceramic reinforcements and industrial applications of these composites.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003490
EISBN: 978-1-62708-195-5
... into existence as an industrial material. Their potential benefits for structural applications were recognized in 1941 when the first task force was initiated at Wright-Patterson Air Force Base to examine fiber-reinforced plastics for aircraft applications. In 1943, the first reinforced composite airframe...
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003033
EISBN: 978-1-62708-200-6
... Abstract This article addresses the types, properties, forms, and applications of fibers that are available for use in fiber-reinforced polymeric matrix composites, including glass, graphite, carbon, aramid, boron, silicon carbide, ceramic, continuous oxide and discontinuous oxide fibers...
Abstract
This article addresses the types, properties, forms, and applications of fibers that are available for use in fiber-reinforced polymeric matrix composites, including glass, graphite, carbon, aramid, boron, silicon carbide, ceramic, continuous oxide and discontinuous oxide fibers. It describes the functions, types, and chemical composition of fiber sizing agents. The article discusses the styles, properties, applications, and weaving methods of unidirectional, two-directional and multidirectionally reinforced fabrics. The article also reviews the use of prepreg resins in aerospace and lower performance applications.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001101
EISBN: 978-1-62708-162-7
... discusses the property prediction and processing methods for MMCs. aluminum-matrix composites continuous fiber reinforcements copper-matrix composites discontinuous reinforcements intermetallic-matrix composites magnesium-matrix composites mechanical properties metal-matrix composites physical...
Abstract
Metal-matrix composites (MMCs) are a class of materials with potential for a wide variety of structural and thermal management applications. They are nonflammable, do not outgas in a vacuum, and suffer minimal attack by organic fluids, such as fuels and solvents. This article presents an overview of the status of MMCs, and provides information on physical and mechanical properties, processing methods, distinctive features, and various types of continuously and discontinuously reinforced aluminum, magnesium, titanium, copper, superalloy, and intermetallic-matrix composites. It further discusses the property prediction and processing methods for MMCs.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003351
EISBN: 978-1-62708-195-5
... to evolve, as evidenced by the recent introduction of carbon nanotubes and nanofibers, as well as new varieties of carbon fiber and high- temperature ceramic fibers. On the matrix side, resins continue to improve through modified formulations and the introduction of fillers, such as silicate-based nanoclay...
Abstract
This article provides a summary of the concepts discussed in the articles under the Section “Constituent Materials” in ASM Handbook, Volume 21: Composites. The Section describes the major matrix resins and reinforcing fibers used in composite materials, as well as some of the intermediate material forms available for composite fabrication.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003480
EISBN: 978-1-62708-195-5
... isotropic values. Fiber volume fractions for metal-matrix composites reinforced with continuous fibers are selected to achieve an in-plane coefficient of thermal expansion of 6.5 ppm/K. Although the thermal conductivities of Cu-W and Cu-Mo are much greater than that of Kovar, they are in the range...
Abstract
This article presents an overview of advanced composites, namely, polymer matrix composites, metal-matrix composites, ceramic-matrix composites, and carbon-matrix composites. It also provides information on the properties and applications of the composites in thermal management and electronic packaging.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003359
EISBN: 978-1-62708-195-5
... aspects of aluminum oxide fibers, silicon carbide fibers, boron fibers, and carbon fibers. The commercial fibers for reinforcement of metal-matrix composites are presented in a table. A tabulation of the coating schemes for silicon carbide monofilament fibers is also provided. continuous fiber...
Abstract
For the reinforcement of metal-matrix composites, four general classes of materials are commercially available: oxide fibers based primarily on alumina and alumina silica systems, nonoxide systems based on silicon carbide, boron fibers, and carbon fibers. This article discusses the key aspects of aluminum oxide fibers, silicon carbide fibers, boron fibers, and carbon fibers. The commercial fibers for reinforcement of metal-matrix composites are presented in a table. A tabulation of the coating schemes for silicon carbide monofilament fibers is also provided.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003350
EISBN: 978-1-62708-195-5
... of these systems, the matrix is typically a continuous phase throughout the component. The second level of classification refers to the reinforcement form—particulate reinforcements, whisker reinforcements, continuous fiber laminated composites, and woven composites (braided and knitted fiber architectures...
Abstract
This article begins with a brief history of composite materials and discusses its characteristics. It presents an introduction to the constituents, product forms, and fabrication processes of composite materials. The article concludes with a discussion on the applications of organic-matrix, metal-matrix, and ceramic-matrix composites.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003472
EISBN: 978-1-62708-195-5
... been used as matrix materials for a wide range of metal matrix composite materials. A partial list of these materials includes: Reinforcement Matrix alloys Boron fiber Aluminum, titanium Silicon carbide fiber Aluminum, titanium, magnesium, copper Graphite Fiber Aluminum, magnesium...
Abstract
This article focuses on the techniques used in recycling of aluminum metal matrix composites (MMCs) such as discontinuous SiC reinforced aluminum MMCs and continuous reinforced aluminum MMCs. It provides a discussion on the properties of recycled aluminum MMCs and disposal of aluminum MMCs.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006488
EISBN: 978-1-62708-207-5
... Abstract In general, metal-matrix composites (MMCs) are classified into three broad categories: continuous fiber-reinforced composites, discontinuous or short fiber-reinforced composites, and particle-reinforced composites. This article focuses on stir casting and melt infiltration as the two...
Abstract
In general, metal-matrix composites (MMCs) are classified into three broad categories: continuous fiber-reinforced composites, discontinuous or short fiber-reinforced composites, and particle-reinforced composites. This article focuses on stir casting and melt infiltration as the two main methods of MMC solidification processing. It describes the MCC casting methods, such as sand and permanent mold casting, centrifugal casting, compocasting, and high-pressure die casting. The article discusses the MMC infiltration processes in terms of pressure infiltration casting and liquid metal infiltration. It reviews the powder metallurgy processing of aluminum MMCs and deformation processing of discontinuously reinforced aluminum composites. The article concludes with a discussion on the processing of fiber-reinforced aluminum.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003163
EISBN: 978-1-62708-199-3
... and discontinuous fibers and (b) particle- or whisker-reinforced composites. The aspect ratio generally characterizes the shape. In continuous-fiber composites, the load is applied directly to both the matrix and the fiber. In discontinuous-fiber composites or particle-reinforced composites, the load is transmitted...
Abstract
Metal-matrix composites (MMCs) are a class of materials with potential for a wide variety of structural and thermal applications. This article discusses the mechanical properties of MMCs, namely aluminum-matrix composites, titanium-matrix composites, magnesium-matrix composites, copper-matrix composites, superalloy-matrix composites, and intermetallic-matrix composites. It describes the processing methods of discontinuous aluminum MMCs which include casting processes, liquid-metal infiltration, spray deposition and powder metallurgy. The article provides useful information on aluminum MMC designation system and also describes the types of continuous fiber aluminum MMCs, including aluminum/boron MMC, aluminum/silicon carbide MMC, aluminum/graphite MMC, and aluminum/alumina MMC.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003031
EISBN: 978-1-62708-200-6
... Abstract This article discusses the types, properties, and uses of continuous-fiber-reinforced composites, including glass, carbon, aramid, boron, continuous silicon carbide, and aluminum oxide fiber composites. While polyester and vinyl ester resins are the most used matrix materials...
Abstract
This article discusses the types, properties, and uses of continuous-fiber-reinforced composites, including glass, carbon, aramid, boron, continuous silicon carbide, and aluminum oxide fiber composites. While polyester and vinyl ester resins are the most used matrix materials for commercial applications, epoxy resins, bismaleimide resins, polyimide resins, and thermoplastic resins are used for aerospace applications. The article addresses design considerations as well as product forms and fabrication processes.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003372
EISBN: 978-1-62708-195-5
... infiltration polymer infiltration polymer pyrolysis sol-gel process FIBER-REINFORCED CERAMIC-MATRIX COMPOSITES (CMCs) have received a great deal of interest since the 1980s for their potential as high-temperature structural materials. This new class of composites has been the subject of many research...
Abstract
This article focuses on the process methods and matrix chemistries of ceramic-matrix composites. These methods include pressure-assisted densification, chemical vapor infiltration, melt infiltration, polymer infiltration and pyrolysis, and sol-gel processing. The article discusses the use of a ceramic, preceramic, or metal phase as a fluid or vapor phase reactant to form the matrix. Emphasis is placed on microstructural features that influence ultimate composite properties.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003420
EISBN: 978-1-62708-195-5
... magnesium, copper, and superalloy MMCs. metal-matrix composites high-pressure die casting pressure infiltration casting liquid metal infiltration spray deposition powder metallurgy continuous fiber-reinforced aluminum composite discontinuously reinforced titanium composites continuous fiber...
Abstract
Metal-matrix composites (MMCs) are a class of materials with a wide variety of structural, wear, and thermal management applications. This article discusses the primary processing methods used to manufacture discontinuous aluminum MMCs, namely, high-pressure die casting, pressure infiltration casting, liquid metal infiltration, spray deposition, and powder metallurgy methods. It describes the processing of continuous fiber-reinforced aluminum, discontinuously, reinforced titanium, and continuous fiber-reinforced titanium. The article concludes with information on work done to develop magnesium, copper, and superalloy MMCs.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003421
EISBN: 978-1-62708-195-5
.... It is perhaps the most important technique used to produce continuous fiber reinforced glass and glass-ceramic composites ( Ref 10 , 11 , 12 , 13 , and 14 ). The slurry infiltration process involves two main stages: (1) incorporation of the reinforcing phase into a “slurry” of the unconsolidated matrix...
Abstract
Ceramic-matrix composites (CMCs) have ability to withstand high temperatures and have superior damage tolerance over monolithic ceramics. This article describes important processing techniques for CMCs: cold pressing, sintering, hot pressing, reaction-bonding, directed oxidation, in situ chemical reaction techniques, sol-gel techniques, pyrolysis, polymer infiltration, self-propagating high-temperature synthesis, and electrophoretic deposition. The advantages and disadvantages of each technique are highlighted to provide a comprehensive understanding of the achievements and challenges that remain in this area.
1