1-20 of 754

Search Results for contact fatigue wear

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006393
EISBN: 978-1-62708-192-4
... Abstract This article discusses the composition, properties and applications of bearing steels. It focuses on the typical wear modes that rolling-element bearings experience: contact fatigue wear, abrasive wear, adhesive wear, and corrosive wear. The article provides information on reliability...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006390
EISBN: 978-1-62708-192-4
... that lists the nominal compositions and typical applications of cobalt-base alloys. It discusses the properties and relative performance of specific alloys when subjected to the more common types of wear. These include abrasive wear, high-temperature sliding wear, rolling-contact fatigue wear, and erosive...
Book Chapter

By Brett A. Miller, Phillip Swartzentruber
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006810
EISBN: 978-1-62708-329-4
..., the article describes the background information about the shaft used for examination. Then, it focuses on various failures in shafts, namely bending fatigue, torsional fatigue, axial fatigue, contact fatigue, wear, brittle fracture, and ductile fracture. Further, the article discusses the effects...
Book Chapter

Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006417
EISBN: 978-1-62708-192-4
...-work tool steels. It describes four basic mechanisms of tool steel wear: abrasion, adhesion, corrosion, and contact fatigue wear. The article describes the factors to be considered in the selection of lubrication systems for tool steel applications. It also discusses the surface treatments for tool...
Book Chapter

By Giovanni Straffelini
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006789
EISBN: 978-1-62708-295-2
.... Wear may occur by rolling-sliding or by surface fatigue (rolling-contact fatigue, or RCF), but eventually RCF begins, and lines of travel caused by micropitting may appear on bearing surfaces. Rolling lines of travel can progress to visible pitting and even spalling. When the mechanical action...
Book Chapter

By R. Ahmed
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003563
EISBN: 978-1-62708-180-1
... fatigue limits, and thus call for improved understanding of the RCF failure modes. Fig. 2 Stress risers initiating rolling-contact fatigue failure Four distinct failure modes have been established in rolling-contact bearings ( Ref 5 ). These classifications include wear-type failures...
Book Chapter

By Bryan Allison
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006792
EISBN: 978-1-62708-295-2
.... A brief discussion on coatings to improve surface-initiated fatigue and wear is included, due to the similarity to RCF and the increasing criticality of this failure mode. The article presents a working knowledge of Hertzian contact theory, describes the life prediction of rolling-element bearings...
Book Chapter

By Y. Wang, M. Hadfield
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003564
EISBN: 978-1-62708-180-1
... fatigue failure, the delamination failure, and the rolling-contact wear. ceramics delamination failure fatigue cracks propagation rolling contact fatigue test machines rolling-contact fatigue rolling-contact wear spalling fatigue failure surface cracks TECHNICAL CERAMICS used...
Book Chapter

Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006358
EISBN: 978-1-62708-192-4
... Abstract This article discusses the physical signs of rolling-contact wear (RCW). It lists the major considerations in gear design and describes the mechanisms of RCW. The article provides a guide to rolling-contact fatigue (RCF) testing methods. It explains the steps involved in the processes...
Book Chapter

By S.J. Shaffer, W.A. Glaeser
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003316
EISBN: 978-1-62708-176-4
... Abstract Fretting is a special wear process that occurs at the contact area between two materials under load and subject to slight relative movement by vibration or some other force. During fretting fatigue, cracks can initiate at very low stresses, well below the fatigue limit of nonfretted...
Book Chapter

By S.J. Shaffer, W.A. Glaeser
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002372
EISBN: 978-1-62708-193-1
... Abstract Fretting is a special wear process that occurs at the contact area between two materials under load and subject to slight relative movement by vibration or some other force. This article focuses on measures to avoid or minimize crack initiation and fretting fatigue. It lists...
Book Chapter

By P.H. Shipway
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006414
EISBN: 978-1-62708-192-4
... in the numerous interwire contacts, leading to both fretting wear and fretting fatigue ( Ref 9 ); results of studies of fretting damage in an aluminum power line under a vibration damper are given in Ref 10 . Most ropes include some form of internal lubrication to lessen the effects of such movement. Fatigue...
Book Chapter

By W.A. Glaeser, S.J. Shaffer
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002373
EISBN: 978-1-62708-193-1
.... In many cases, bearing failure is now related to wear rather than to contact fatigue. Good surface finish is necessary for long bearing life. As was noted, contact fatigue is initiated by surface defects like dents and deep scratches. Surface defects not only cause asperity contact in thin-film...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
... for it to occur is in machinery. The contacts between hubs, shrink and press fits, and bearing housings on loaded rotating shafts or axles are particularly prone to fretting damage, but because the movement arises from alternating stresses in the shaft surface, the problem is more one of fatigue than wear ( Ref 6...
Book Chapter

By Raymond G. Bayer
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002474
EISBN: 978-1-62708-194-8
... as a result of the nature of the dominant wear mode. For example, fatigue wear modes are frequently stress dependent. For non-conformal contacts at constant load, wear rates would continue to decrease as the wear results in increased contact area and, hence, lower contact stress. Severe versus Mild Wear...
Image
Published: 31 December 2017
Fig. 7 Scanning electron microscopy micrographs of wear mechanisms and the appearance of worn materials surfaces. (a) Surface fatigue. Fatigue striations, cracks, and wear particle formation due to cyclic contact stress of a contacting counterbody. (b) Abrasion. Scratches and material removal More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003631
EISBN: 978-1-62708-182-5
... Abstract Mechanically assisted degradation of metals is defined as any type of degradation that involves a corrosion mechanism and a wear or fatigue mechanism. This article provides a discussion on the mechanisms of five forms of degradation: erosion, fretting corrosion, fretting fatigue...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006820
EISBN: 978-1-62708-329-4
... lubrication, the measurement of the backlash, and the necessary factors for starting the failure analysis. Next, the article explains various gear failure causes, including wear, scuffing, Hertzian fatigue, cracking, fracture, and bending fatigue, and finally presents examples of gear and reducer failure...
Book Chapter

By Siegfried Fouvry
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
... are nucleated by the fretting contact stresses and propagate due to the bulk fatigue stress. The object of this article is to focus on fretting wear related to debris formation and ejection, so the specific problem of fretting fatigue is not discussed in detail. Most of the fretting wear concerns quasi-static...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006355
EISBN: 978-1-62708-192-4
... and then oxidized again. Wear Behavior of Nitrided Layers The wear modes of nitrided materials include abrasion, adhesion, tribo-oxidation, as well as contact fatigue ( Ref 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 19 , 20 , 21 , 22 , 23 ). The advantages and disadvantages of the various test...