Skip Nav Destination
Close Modal
Search Results for
constant-voltage power sources
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 480 Search Results for
constant-voltage power sources
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001337
EISBN: 978-1-62708-173-3
... Abstract Power sources are apparatuses that are used to supply current and voltages that are suitable for particular welding processes. This article describes power sources for arc welding, resistance welding, and electron-beam welding. The more-common welding processes that use constant...
Abstract
Power sources are apparatuses that are used to supply current and voltages that are suitable for particular welding processes. This article describes power sources for arc welding, resistance welding, and electron-beam welding. The more-common welding processes that use constant-current and constant-voltage power sources are listed in a table. The article describes the open-circuit voltage characteristics and power source control methods. The control methods employ either pulse width modulation (PWM) or frequency modulation (FM).
Image
Published: 31 October 2011
Fig. 12 Three-phase, constant current/variable voltage, direct current power source. SCR, silicon-controlled rectifier
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001485
EISBN: 978-1-62708-173-3
... by amperage signals through solid-state controls. This method controls the electrode feed speed, which maintains the preset amperage. It is run with constant-voltage power sources only. Voltage-Controlled Method A voltage-controlled method maintains arc length by voltage signals through solid-state...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005572
EISBN: 978-1-62708-174-0
... determine the current output and the stability of the transfer. In conventional constant voltage power sources, the open-circuit voltage and inductance of the power source affect the current level and rate of current rise. The optimum inductance setting depends on the electrical impedance of the welding...
Abstract
This article discusses the operation principles, advantages, limitations, process parameters, consumables or electrodes, the equipment used, process variations, and safety considerations of gas metal arc welding (GMAW). It reviews the important variables of the GMAW process that affect weld penetration, bead shape, arc stability, productivity, and overall weld quality. These include welding consumables, equipment settings, and gun manipulation. The major components of a GMAW installation such as a welding gun, shielding gas supply, electrode feed unit, power source, and associated controls are discussed.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001354
EISBN: 978-1-62708-173-3
... with a variable-current (constant-voltage) power source. As the gun-to-work relationship changes, which instantaneously alters the arc length, the power source delivers either more current (if the arc length is decreased) or less current (if the arc length is increased). This change in current will cause...
Abstract
Gas-metal arc welding (GMAW) is an arc welding process that joins metals together by heating them with an electric arc that is established between a consumable electrode (wire) and a workpiece. This article discusses the advantages and limitations, operating principle, metal transfer mechanisms, and process variables of the GMAW process. The process variables include welding current, polarity, arc voltage, travel speed, electrode extension, electrode orientation, and electrode diameter. The major components of the basic equipment for a typical GMAW installation are discussed. The article also describes two consumable elements, such as electrode and shielding gas, of the GMAW process. It concludes with information on the safety aspects.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005565
EISBN: 978-1-62708-174-0
...) for arc welding Fig. 5 Some square-wave-type power supplies Although the term constant voltage is used to describe the amps-volts relationship of the power sources used for a number of arc welding methods, the output does vary somewhat as current increases ( Fig. 2 ). Curve “A” in Fig...
Abstract
This article describes the characteristics and technology of power sources for major arc welding methods along with the suggested criteria for assuring that a power source selection can safely deliver the desired output and yield long service life. Power sources with single-phase AC input voltage, three-phase input machines, inverter-based power sources, short arc gas metal arc welding power sources, and multiple arc power sources are discussed. The article also presents the factors to be considered when selecting a power source.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006515
EISBN: 978-1-62708-207-5
..., these were the constant-current type with a “drooping” volt-ampere characteristic, in which the slope of the volt-ampere curve was relatively steep so that a change in the arc voltage (arc length) would not create a major change in the arc current. They also produced a true sine wave while in the ac mode...
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005176
EISBN: 978-1-62708-186-3
... and the positive side connected to the workpiece. Systems that include a pilot arc also have a positive connection, limited in current through a resistor, to the tip in the torch. Power supplies are usually of a constant-current, dropping volt-amp curve design, and they have higher open-circuit voltages (up to 400...
Abstract
Electric arc cutting is used on ferrous and nonferrous metals for rough severing, such as removing risers or scrap cutting, as well as for more closely controlled operations. This article describes the operating principles, equipment selection, process variables, and safety measures recommended for plasma arc cutting and air carbon arc cutting. Special applications of electric arc cutting, including shape cutting, gouging, and underwater cutting, are also discussed. The article provides information on other electric arc cutting methods, namely, the exo-process and oxygen arc cutting. It concludes with information on the seldom-used electric arc cutting methods, such as shielded metal arc cutting, gas metal arc cutting, and gas tungsten arc cutting.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005838
EISBN: 978-1-62708-167-2
... will double the supply current while conserving load voltage. This circuit is presented only for completeness. The half-bridge constant-voltage circuit ( Fig. 13a ) is an important circuit for a number of reasons: it produces a symmetrical waveform, can operate easily from a high-voltage power source...
Abstract
This article provides a brief description of load conditions for single-shot heat treating, vertical scanning, and brazing and soldering. It discusses the various power components used in power supplies. These include capacitors, integrated power module, transformers, and various switching devices, namely, silicon-controlled rectifiers, insulated-gate bipolar transistors, and metal-oxide semiconductor field-effect transistors. The article also provides information on frequency-multiplication harmonic-induction power supplies, namely, push-pull and half-bridge inverters and full-bridge inverters. Series resonant and parallel resonant circuits and their tuning calculations associated with output networks are also discussed. The article describes the frequency range of simultaneous dual-frequency induction heating power supply, and discusses the advantages, applications, and technical background of independently controlled frequency and power (IFP) induction heating power supply. It concludes with a description of the developments in control systems for modern induction power supplies.
Image
in Power Supplies for Induction Heat Treating, Brazing, and Soldering
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 13 Half-bridge inverters. Split power supplies are shown. (a) Constant-voltage inverter. The split voltage source is typically emulated with a capacitor divider, which doubles as the resonant capacitor. (b) Constant-current inverter. Note the similarity to the push-pull converter in Fig
More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005559
EISBN: 978-1-62708-174-0
... is not constant. Contact resistances decrease in magnitude, and the bulk resistance of the work column increases as its temperature rises. Furthermore, resistance variations of the workpiece may cause variations in the current amplitude, depending on the nature of the power source. Under these circumstances...
Abstract
This article provides an overview of the components of a resistance welding machine. It focuses on the single-phase control system and medium-frequency direct current system of resistance welding. The article also includes information on their feedback systems, rectification systems, and power sources.
Image
Published: 01 January 1993
Fig. 4 Volt-ampere curves of typical dc power sources. (a) Constant-current source. (b) Constant-voltage source
More
Image
Published: 01 January 1997
A, constant-voltage rectifier Electrode wire (a) 0.76 mm (0.030 in.) diam ER70S-2 Wire feed Constant feed Current 80–85 A (DCEN) Voltage 26 V Shielding gas 75% argon–25% carbon dioxide, at 1.1 m 3 /h (40 ft 3 /h) Wire-feed rate 76–254 cm (30–100 in.) per min Welding speed 25 cm
More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005566
EISBN: 978-1-62708-174-0
... for single-arc SAW. The dc power may be of a constant voltage or variable voltage (also known as constant current) type. In the past, both types have been supplied by motor generator or transformer rectifier-type welders. More recently, inverter power sources have been designed for SAW. In Europe and the Far...
Abstract
Submerged arc welding (SAW) is suited for applications involving long, continuous welds. This article describes the operating principle, application, advantages, limitations, power source, equipment, and fluxes in SAW. It reviews three different types of electrodes manufactured for SAW: solid, cored, and strip. The article highlights the factors to be considered for controlling the welding process, including fit-up of work, travel speed, and flux depth. It also evaluates the defects that occur in SAW: lack of fusion, slag entrapment, solidification cracking, and hydrogen cracking. Finally, the article provides information on the safety measures to be followed in this process.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002475
EISBN: 978-1-62708-194-8
... the case, even at a constant temperature. Perhaps the most striking example is the V - I (voltage-current) characteristic (interdependence) of a semiconductor diode, formed at the junction of two oppositely doped regions. In addition to being highly nonlinear, it is very strongly polarity dependent...
Abstract
This article presents an overview of the electric and magnetic parameters and discusses the significance of these parameters for electronic applications. It describes the components of analog and digital electronic circuits. The article reviews the augmenting technologies: magnetic and special technologies such as electrooptical.
Image
Published: 31 October 2011
Fig. 6 Plots showing the reconstructed beams made at a constant voltage of 100 kV and current of 10 mA on (a) the development welding system at a defocus setting of +11 and a work distance of 210 mm (8.3 in.) (peak power density = 11.9 kW/mm 2 ) and (b) the production welding system
More
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005924
EISBN: 978-1-62708-166-5
... be used. Power Supply Regulation The ability to produce the same amount of power for each part during the heating cycle is important. The power supplies must have regulation for two reasons. The first is so that the power supply has constant output if there is a change of the line voltage during...
Abstract
Induction heating has many different applications, such as melting, heating stock for forging, and heat treating. This article begins with a discussion on the types of power supplies, namely, solid-state power supplies and oscillator tubes. It provides information on system elements, including cooling systems, power supplies, heat stations, work handling fixtures, induction or work coils, and quench systems. The article discusses the influence of system elements on induction heat treating system design. It also deals with the general theory, types, and applications of induction coils.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005836
EISBN: 978-1-62708-167-2
... of voltage source inverter (VSI) Another topology to convert dc/ac is the current source inverter (CSI). While the dc bus voltage is kept constant by the dc bus capacitor in the voltage source inverter, the CSI has a different principal. In the CSI, the dc bus current is kept more or less constant...
Abstract
This article reviews the performance of power electronics components, namely, power rectifiers, insulated-gate bipolar transistors, metal-oxide semiconductor field-effect transistors, diodes, and silicon-controlled rectifiers. It provides information on induction heating power supplies with multiple heat stations, such as switching units and multiple (zone) outputs. The article describes power supply operational control and power supply protection circuits. It details duty cycle, power factor, and harmonics of power supplies. The article also describes system parameters, software analysis-calculations, human analysis-decisions, multiple system arrangements, and zone control systems for power supply selection. It provides information on the maintenance of induction power supplies, detailing the safety precautions to be taken and the need for routine inspection and servicing.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001355
EISBN: 978-1-62708-173-3
...-automatic FCAW process is a constant-voltage direct current (dc) machine. Most power supplies used for semiautomatic FCAW have output ratings of 600 A or less. A power supply rated at 60% or more duty cycle is the best choice for most industrial applications, whereas a duty-cycle rating as low as 20% may...
Abstract
In the flux-cored arc welding (FCAW) process, the heat for welding is produced by an electric arc between a continuous filler metal electrode and a workpiece. This article discusses the advantages and disadvantages and applications of the FCAW process. It schematically illustrates the semiautomatic FCAW equipment used in the gas-shielded FCAW process. The article discusses the manufacture of flux-cored electrodes and the classification of electrodes, such as carbon and low-alloy steel electrodes, stainless steel electrodes, and nickel-base electrodes. The functions of common core ingredients in FCAW electrodes are listed in a table.
Image
Published: 01 January 1997
current 350 to 410 A (DCEN) Welding speed 46 to 51 mm (18 to 20 in.) per min Number of passes, original design Three Number of passes, improved design Two Power supply 40 V, 600 A transformer-rectifier (constant-voltage) Fixturing Chuck-type turning rolls; alignment clamps for tack
More
1