Skip Nav Destination
Close Modal
Search Results for
constant-load testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1353
Search Results for constant-load testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2000
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003243
EISBN: 978-1-62708-199-3
.... To determine the susceptibility of alloys to SCC and hydrogen embrittlement, several types of testing are available. This article describes the constant extension testing, constant load testing, constant strain-rate testing for smooth specimens and precracked or notched specimens of SCC. It provides...
Abstract
Stress-corrosion cracking (SCC) occurs under service conditions, which can result, often without any prior warning, in catastrophic failure. Hydrogen embrittlement is distinguished from stress-corrosion cracking generally by the interactions of the specimens with applied currents. To determine the susceptibility of alloys to SCC and hydrogen embrittlement, several types of testing are available. This article describes the constant extension testing, constant load testing, constant strain-rate testing for smooth specimens and precracked or notched specimens of SCC. It provides information on the cantilever beam test, wedge-opening load test, contoured double-cantilever beam test, three-point and four-point bend tests, rising step-load test, disk-pressure test, slow strain-rate tensile test, and potentiostatic slow strain-rate tensile test for hydrogen embrittlement.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003288
EISBN: 978-1-62708-176-4
... and rupture strengths of materials. The article describes the different types of equipment for determination of creep characteristics, including test stands, furnaces, and extensometers. It also discusses the different testing methods for creep rupture: constant-load testing and constant-stress testing...
Abstract
This article reviews the basic equipment and methods for creep and creep rupture testing. It begins with a discussion on the creep properties, including stress and temperature dependence, as well as of the extrapolation techniques that permit estimation of the long-term creep and rupture strengths of materials. The article describes the different types of equipment for determination of creep characteristics, including test stands, furnaces, and extensometers. It also discusses the different testing methods for creep rupture: constant-load testing and constant-stress testing. The article presents other testing considerations and concludes with information on stress relaxation testing.
Image
Published: 01 January 2000
Fig. 10 Results of tests on lead wire under constant-load and constant-stress conditions. Source: Ref 36
More
Image
Published: 01 January 1996
Image
Published: 01 January 1987
Fig. 645 Hydrogen embrittlement of AISI type 304 tested under constant load in pure hydrogen gas at 100 kPa (1 atm) and 25 °C (75 °F). The two-part fractograph compares matching fracture surfaces. Note the quasi-cleavage-type facets. They generally exhibit more ductility (have a rougher
More
Image
Published: 01 January 2000
Image
Published: 01 January 2003
Fig. 4 Comparison of changing stress during initiation and growth of isolated SCC in constant-strain and constant-load tests of a uniaxially loaded tension specimen. (a) Constant-strain test. (b) Constant-load test. σ M is the maximum stress at crack tip, σ N is the average stress in the net
More
Image
Published: 01 January 2002
Fig. 3 Stages of creep deformation. (a) Strain curve for the three stages of creep under constant-load testing (curve A) and constant-stress testing (curve B). (b) Relationship of strain rate, or creep rate, and time during a constant-load creep test. The minimum creep rate is attained during
More
Image
Published: 15 January 2021
Fig. 3 Stages of creep deformation. (a) Strain curve for the three stages of creep under constant-load testing (curve A) and constant-stress testing (curve B). (b) Relationship of strain rate, or creep rate, and time during a constant-load creep test. The minimum creep rate is attained during
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003666
EISBN: 978-1-62708-182-5
... Abstract This article describes the incubation, nucleation, and propagation of stress-corrosion cracking and how to evaluate it using standard tests. It discusses constant-strain, constant-load, bending, and uniaxial tension testing and how they compare when evaluating smooth and precracked...
Abstract
This article describes the incubation, nucleation, and propagation of stress-corrosion cracking and how to evaluate it using standard tests. It discusses constant-strain, constant-load, bending, and uniaxial tension testing and how they compare when evaluating smooth and precracked test specimens under elastic-strain, plastic-strain, and residual-stress conditions. The article provides guidance on specimen selection and preparation, strain rate, and test equipment. It also examines service and laboratory test environments and provides detailed information on how to test various steels and alloys and how to interpret test results.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003287
EISBN: 978-1-62708-176-4
... descriptions of creep and explains the testing and mechanism of creep in crystalline solids. It also presents information on the creep response of crystalline and amorphous solids. creep deformation polymers ceramics composites constant load constant true stress creep strain crystalline solids...
Abstract
Creep deformation is normally studied by applying either a constant load or a constant true stress to a material at a sufficiently high homologous temperature so that a measurable amount of creep strain occurs in a reasonable time. This article provides the phenomenological descriptions of creep and explains the testing and mechanism of creep in crystalline solids. It also presents information on the creep response of crystalline and amorphous solids.
Image
Published: 01 January 2003
Fig. 29 Comparison of determination of K ISCC by crack initiation versus crack arrest. (a) Constant-load test. (b) Constant crack-opening displacement test. a 0 = depth of precrack associated with the initial stress intensity K Io ; V pl = plateau velocity
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002370
EISBN: 978-1-62708-193-1
... a represents the life result of the one fractured specimen. Testing of n = 10 specimens leads to the schematic of Fig. 1(c) , which provides some idea of typical scatter. In the case of the so-called “service-load” (in which the stress amplitude is not constant), a frequently used approach is to attribute...
Abstract
This article describes a scientific approach to the planning and evaluation of fatigue tests based on the determination of probabilities for detected fracture positions within the observed range of fatigue scatter. It schematically illustrates a constant-amplitude stress cycling about a possible mean load that leads to the fracture of a single part or specimen. The article discusses the evaluation of the range of transition and of the finite-endurance range for fatigue curves. It concludes with a discussion on extrapolation from the range of finite endurance into the range of transition.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002472
EISBN: 978-1-62708-194-8
... and solid-solution alloys in relatively short-term tests, accepted the concept of steady-state creep (although testing was more often conducted at constant load rather than constant stress), and often assumed implicitly that viscous flow was history independent. This means that not only is there a steady...
Abstract
This article reviews the basic mechanisms of elevated-temperature behavior and associated design considerations, with an emphasis on metals. It discusses the key concepts of elevated-temperature design. These include plastic instability at elevated temperatures; deformation mechanisms and strain components associated with creep processes; stress and temperature dependence; fracture at elevated temperatures; and environmental effects. The article describes the basic presentation and analysis methods for creep rupture. It provides information on the application of these methods to materials selection and the setting of basic design rules. The article examines the limitations of high-temperature components as well as the alternative design approaches and tests for most high-temperature components.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003667
EISBN: 978-1-62708-182-5
... for the following five types of AISI 4340 steel test specimens: Type 1a: notched round bars, stressed in tension, under constant load Type 1b: notched round bars loaded in tension with stressed O-rings Type 1c: notched round bars loaded in bending with loading bars Type 1d: notched C-rings loaded...
Abstract
This article begins with a discussion on the classification of hydrogen embrittlement and likely sources of hydrogen and stress. The article describes several hydrogen embrittlement test methods, including cantilever beam tests, wedge-opening load tests, contoured double-cantilever beam tests, rising step-load tests, and slow strain rate tensile tests. It also describes the interpretation of test results and how to control hydrogen embrittlement during production.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... in the third stage of tertiary creep. Constant-stress tests (as opposed to constant-load tests) often do not show tertiary behavior. Fig. 3 Stages of creep deformation. (a) Strain curve for the three stages of creep under constant-load testing (curve A) and constant-stress testing (curve B). (b...
Abstract
This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... creep tests under a constant stress instead of a constant load. Each of these early studies on creep revealed a change in the creep response of a material as a function of time. Bulk Creep Behavior Some key material properties at high temperature are thermal expansion coefficient, stress rupture...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003290
EISBN: 978-1-62708-176-4
... compression testing bend testing torsion testing springs THE MAJORITY OF CREEP TESTING, as described in this Volume, uses a fixed load (or stress) at a constant temperature and measures the increase in strain as a function of time. However, materials may also creep under constraint with little...
Abstract
This article discusses stress relaxation testing on metallic materials, as covered by ASTM E 328. It reviews the two types of stress relaxation tests performed in tension, long-term and accelerated testing. The article illustrates load characteristics and data representation for stress relaxation testing used for the most convenient and common uniaxial tensile test. It concludes with information on compression testing, bend testing, torsion testing, and tests on springs.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003289
EISBN: 978-1-62708-176-4
... an initial high value and is followed by a tertiary stage of rising creep rate as rupture is approached ( Fig. 2 ). Fig. 1 Schematic tension-creep curve showing the three stages of creep Fig. 2 Relationship of strain rate, or creep rate, and time during a constant-load creep test...
Abstract
This article discusses the methods for assessing creep-rupture properties, particularly, nonclassical creep behavior. The determination of creep-rupture behavior under the conditions of intended service requires extrapolation and/or interpolation of raw data. The article describes the various techniques employed for data handling of most materials and applications of engineering interest. These techniques include graphical methods, methods using time-temperature parameters, and methods used for estimations when data are sparse or hard to obtain. The article reviews the estimation of required creep-rupture properties based on insufficient data. Methods for evaluation of remaining creep-rupture life, including parametric modeling, isostress testing, accelerated creep testing, evaluation by the Monkman-Grant coordinates, and the Materials Properties Council (MPC) Omega method, are also reviewed.
1