1-20 of 314

Search Results for condensate pitting corrosion

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2006
Fig. 8 Laboratory test to evaluate condensate pitting corrosion. (a) Arrangement of sample. (b) Pitting condensate corrosion results for six exhaust alloys. Pit depths represent the average of the ten deepest pits. Details of the test procedure are given in text. More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004163
EISBN: 978-1-62708-184-9
..., hot salt attack, and thermal fatigue. The article describes the various forms of corrosion which occur at the cold end of an exhaust system. The forms of cold end exhaust corrosion, including condensate pitting corrosion, exterior salt pitting, crevice corrosion, intergranular corrosion, and galvanic...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004152
EISBN: 978-1-62708-184-9
... problems associated with common feedwater heater tube materials. air-cooled condensers condensate-feedwater system corrosion deaerators erosion-corroison channel feedwater heaters header feedwater heaters galvanic corrosion pitting corrosion power plants water-cooled condensers tube...
Image
Published: 01 August 2018
Fig. 25 Pitted 316 stainless steel condenser tube. (a) Inner surface of main condenser tube showing extensive localized pitting corrosion attack. Original magnification: 1×. (b) Longitudinal section passing through a pitted area showing extensive pitting that progressed beneath the inner More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004154
EISBN: 978-1-62708-184-9
...-accelerated corrosion, oxygen pitting, chelant corrosion, caustic corrosion, acid corrosion, organic corrosion, phosphate corrosion, hydrogen damage, and corrosion-assisted cracking. boilers corrosion caustic corrosion organic corrosion corrosion prevention corrosion control hydrogen damage flow...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004155
EISBN: 978-1-62708-184-9
... Abstract The steam turbine is the simplest and most efficient engine for converting large amounts of heat energy into mechanical work. This article discusses the primary corrosion mechanisms such as corrosion fatigue, stress-corrosion cracking (SCC), pitting, corrosion, and erosion-corrosion...
Image
Published: 01 January 2005
originating from the inside of the bellows. Analysis showed iron-rich brown products with high chloride and sulfur content. The failures were attributed to pitting corrosion with extreme undercutting, probably resulting from changes in location of the hoses during storage and use. Bleach, used to deodorize More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
... to use a 5% Cr steel or a 9% Cr steel, neither of which is susceptible to SCC in the presence of chlorides. These steels are susceptible to corrosion by hydrogen sulfide, although much less so than carbon steel. Example 3: Pitting of a Condenser Tube in a Saltwater Heat Exchanger due to Hydrogen...
Image
Published: 01 January 2002
Fig. 4 Failed aluminum brass condenser tube from a saltwater heat exchanger. The tube failed from pitting caused by hydrogen sulfide and chlorides in the feedwater. (a) Cross section of tube showing deep pits and excessive metal wastage. 2 3 4 ×. (b) Higher magnification view of a pit More
Image
Published: 01 January 2005
Fig. 23 The carbon steel compartments (cells) in an electrostatic precipitator at a cement works were lined with type 304 stainless steel sheet to prolong service expectations. After approximately one year. The stainless steel lining was perforated by pitting as a result of corrosion More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
... or a 9% Cr steel, neither of which is susceptible to SCC in the presence of chlorides. These steels are susceptible to corrosion by hydrogen sulfide, although much less so than carbon steel. Example 3: Pitting of a Condenser Tube in a Saltwater Heat Exchanger Due to Hydrogen Sulfide Contamination...
Image
Published: 30 August 2021
Fig. 4 Failed aluminum brass condenser tube from a saltwater heat exchanger. The tube failed from pitting caused by hydrogen sulfide and chlorides in the feedwater. (a) Cross section of tube showing deep pits and excessive metal wastage. Original magnification: 2.75×. (b) Higher-magnification More
Image
Published: 01 January 2006
Fig. 23 Differences in corrosion rate and modality—(a) pitting and (b) general corrosion—as determined by automated, real-time electrochemical corrosion monitoring system using linear polarization resistance, electrochemical noise, and harmonic distortion analysis. Note comparison More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003137
EISBN: 978-1-62708-199-3
... of undercut pits. When this form of corrosion occurs in a condenser tube, it is usually confined to a region near the inlet end of the tube where fluid flow is rapid and turbulent. If some of the tubes in a bundle become plugged, the velocity is increased in the remaining tubes; therefore, the unit should...
Image
Published: 01 January 2002
Fig. 15 Layout of a stainless steel reactor condenser that experienced pitting corrosion. VAM, vinyl acetate monomer. Source: Ref 20 More
Image
Published: 15 January 2021
Fig. 15 Layout of a stainless steel reactor condenser that experienced pitting corrosion. VAM, vinyl acetate monomer. Source: Ref 20 More
Image
Published: 01 January 2002
Fig. 36 Section through type 316 stainless steel tubing that failed by SCC because of exposure to chloride-contaminated steam condensate. Micrograph shows a small transgranular crack that originated at a corrosion pit on the inside surface of the tubing and only partly penetrated the tubing More
Image
Published: 01 January 2002
Fig. 30 Section through type 316 stainless steel tubing that failed by SCC because of exposure to chloride-contaminated steam condensate. Micrograph shows a small transgranular crack that originated at a corrosion pit on the inside surface of the tubing and only partly penetrated the tubing More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004102
EISBN: 978-1-62708-184-9
..., tuberculation, and under-deposit corrosion (UDC), microbiologically influenced corrosion (MIC), galvanic corrosion, stress corrosion cracking (SCC), and dealloying. General corrosion rates vary greatly because some waters are much more aggressive than others. Localized forms of corrosion, pitting, concentration...
Image
Published: 01 January 2002
Fig. 8 Copper alloy C44300 heat-exchanger tube that failed by impingement corrosion from turbulent flow of air and condensate along the shell-side surface. (a) Shell-side surface of tube showing damaged area. (b) Damaged surface showing ridges in affected area. 4×. (c) Unetched section through More