Skip Nav Destination
Close Modal
Search Results for
computer-controlled hammers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 167 Search Results for
computer-controlled hammers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003973
EISBN: 978-1-62708-185-6
... to process refinements that give engineers much greater control over the final microstructural and mechanical properties. Computerized hammer controls allow unique processing schemes to be developed for optimum results through computer process modeling. Processing step combinations (blow energy, inter...
Abstract
Hammers and high-energy-rate forging machines are classified as energy-restricted machines as they deform the workpiece by the kinetic energy of the hammer ram. This article provides information on gravity-drop hammers, power-drop hammers, die forger hammers, counterblow hammers, and computer-controlled hammers. It describes the three basic designs of high-energy-rate forging (HERF) machines: the ram and inner frame, two-ram, and controlled energy flow. The article reviews forging mechanical presses, hydraulic presses, drive presses, screw presses, and multiple-ram presses.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003183
EISBN: 978-1-62708-199-3
..., precision forging, and cold forging. computer-aided design die design forging processes materials selection types of hammers types of presses Hammers and Presses for Forging FORGING MACHINES fall into three categories according to their method of operation. Mechanical forging presses...
Abstract
Forging machines use a wide variety of hammers, presses, and dies to produce products with the desired shape, size, and geometry. This article discusses the major types of hammers (gravity-drop, power-drop, high speed, and open-die forging), and presses (mechanical, hydraulic, screw-type, and multiple-ram). It further discusses the technologies used in the design of dies, terminology, and materials selection for dies for the most common hot-forging processes, particularly those using vertical presses, hammers, and horizontal forging machines. A brief section is included on computer-aided design in the forging industry. Additionally, the article reviews specific characteristics, process limitations, advantages, and disadvantages of the most common forging processes, namely hot upset forging, roll forging, radial forging, rotary forging, isothermal and hot-die forging, precision forging, and cold forging.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003979
EISBN: 978-1-62708-185-6
... of friction and lubrication in forging. It discusses the types of closed-die forgings, namely, blocker-type, conventional, and close-tolerance. The article illustrates the classification of forging shapes and explains how to predict the forging pressure and the control of die temperature during closed-die...
Abstract
This article provides an overview of the capabilities of closed-die forging. One of the most important aspects of closed-die forging is proper design of preforming operations and of blocker dies to achieve adequate metal distribution. The article describes the effects of friction and lubrication in forging. It discusses the types of closed-die forgings, namely, blocker-type, conventional, and close-tolerance. The article illustrates the classification of forging shapes and explains how to predict the forging pressure and the control of die temperature during closed-die forging. It explains the use of heating equipment for closed-die forging and tabulates the maximum safe forging temperatures for carbon and alloy steels. The article concludes with a discussion on a trimming method used for closed-die forgings.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006493
EISBN: 978-1-62708-207-5
.... Postforging cold work is performed by coining to control size and residual stress in critical applications. Aluminum is generally forged on hydraulic presses due to the high strain-rate sensitivity of aluminum alloys. The use of hammers and mechanical presses is the exception rather than the rule. Ram...
Abstract
This article examines aluminum forging processes, including open-die, closed-die, upset, roll, orbital, spin, and mandrel forging, and compares and contrasts their capabilities and the associated design requirements for forged parts. It discusses the effect of key process variables such as workpiece and die temperature, strain rate, and deformation mode. The article describes the relative forgeability of the ten most widely used aluminum alloys, and reviews common forging equipment, including hammers, mechanical and screw presses, and hydraulic presses. It also discusses postforge operations such as trimming, forming, repairing, cleaning, and heat treatment.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003996
EISBN: 978-1-62708-185-6
..., the complexity and tolerances of the open-die forging of aluminum and other materials depended on the skill of the press operator; however, with the advent of programmable computer-controlled open-die forging presses, it is possible to produce such shapes to overall thickness/width tolerances bands of 1.27 mm...
Abstract
This article begins with discussion on forgeability and the factors affecting the forgeability of aluminum and aluminum alloys. It describes the types of forging methods and equipment and reviews critical elements in the overall aluminum forging process: die materials, die design, and die manufacture. The article discusses the critical aspects of various manufacturing elements of aluminum alloy forging, including the preparation of the forging stock, preheating stock, die heating, lubrication, trimming, forming and repair, cleaning, heat treatment, and inspection. It concludes with a discussion on the forging of advanced aluminum materials and aluminum alloy precision forgings.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
... materials, such as intermetallic alloys and composites, have been developed. Furthermore, the advent of user-friendly computer codes and inexpensive computers has led to a revolution in the application of numerical methods for the design and control of a plethora of bulk-forming processes, thus leading...
Abstract
Metalworking is one of the three major technologies used to fabricate metal products. This article tabulates the classification of metal forming processes. It discusses different types of metalworking equipment, including rolling mills, ring-rolling machines, and thread-rolling and surface-rolling machines. The article outlines the significant characteristics of pressing-type machines: load and energy characteristics, time-related characteristics, and accuracy characteristics. It summarizes different specialized processes such as advanced roll-forming methods, equal-channel angular extrusion, incremental forging, and microforming. The article describes the thermomechanical processing of nickel- and titanium-base alloys and concludes with information on the advancements in process simulation.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003981
EISBN: 978-1-62708-185-6
... required in subsequent forging in closed dies in either a press or hammer, thus eliminating a fullering or blocking operation. Crankshafts, control arms (see Fig. 1 ), connecting rods, and other automotive parts are typical products that are first roll forged from billets to preform stock, and then finish...
Abstract
Roll forging is a process for simultaneously reducing the cross-sectional area and changing the shape of heated bars, billets, or plates. This article provides an overview of the process capabilities, production techniques, machines and machine size selection considerations, and types of roll dies and auxiliary tools for the roll forging. It concludes with information on the production examples of roll forging.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003978
EISBN: 978-1-62708-185-6
...” in this article. Hammers and Presses Because the length of the hammer ram stroke and the magnitude of the force must be controllable over a wide range throughout the forging cycle, gravity-drop hammers and most mechanical presses are not suitable for open-die forging. Power forging hammers (air or steam...
Abstract
Open-die forging can be distinguished from most other types of deformation processes in that it provides discontinuous material flow as opposed to continuous flow. This article describes the equipment and auxiliary tools used in open-die forging. It discusses the production and practice of open-die forging, with some practical examples. The article illustrates macrosegregation in a large steel ingot and lists the forgeable alloys. It reviews the physical and mathematical models used in deformation modeling. The article explains the contour forging and roll planishing process. It inform that to ensure that forgings can be machined to correct final measurements, it is necessary to establish allowances, tolerances, and specifications for flatness and concentricity. The article also tabulates the allowances and tolerances for as-forged shafts and bars.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005154
EISBN: 978-1-62708-186-3
... Controlled Spherical Rollers , Trans. Jpn. Soc. Mech. Eng. , Vol C59 , 1994 , p 2849 – 2854 (in Japanese) 6. Nakajima N. , Computerizing of Traditional Sheet Metal Forming , Trans. Jpn. Soc. Tech. Plasticity , Vol 20 , 1979 , p 686 – 700 (in Japanese) 7. Hasebe T. and Shima...
Abstract
Rapid prototyping (RP) techniques in the sheet-metal forming industry is developed to quickly test the form and fit of new sheet-metal products on a prototype basis as well as for production runs characterized by small lot sizes. This article provides an overview of some of the technologies used for RP and low-volume production of sheet-metal parts. It discusses low-cost tooling and flexible sheet-forming processes and reviews the various aspects of incremental sheet forming.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006359
EISBN: 978-1-62708-192-4
... from computer boards to oilshale, tool wear is a concern of economy. In the chattering of tubes carrying liquid wastes from nuclear reactors, safety and reliability are most important. In most of the above applications, impact occurs with a component of sliding, compounding the relative normal...
Abstract
Impact wear can be defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another solid body. This article discusses the volume (or mass) removal of material either at or under engineering contact stress levels and outlines a rational, semi-empirical impact wear theory. It illustrates a linear wear mechanism that occurs in print heads and repetitive impacts that take place in metallic machine contacts. The article concludes with information on plotting a wear curve for an originally plane, massive carbon steel machine platen subjected to repetitive compound impact by a hard, nonwearing spherical-ended steel alloy component.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.9781627081863
EISBN: 978-1-62708-186-3
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003982
EISBN: 978-1-62708-185-6
... Example of two large contour rings Extreme Cross Sections Due to dramatic advances in ring rolling computer control, an increasing number of extreme washer and sleeve-type rings are being rolled. For washers, wall thickness-to-height ratios of 20 to 1 are common, and using specially prepared...
Abstract
Ring rolling is a process for creating seamless ring shaped components using specialized equipment and forming processes. This article provides information on the applications of ring rolling. It discusses the types of machines used for ring rolling, namely, vertical rolling machines, radial-axial horizontal rolling machines, four-mandrel mechanical table mills, three-mandrel table mills, and automatic radial-axial multiple-mandrel ring mills. The article provides a discussion on the process control technology and ancillary operations of ring rolling. It describes the methods of producing ring blanks and the various types of blanking and rolling tools used in ring rolling process. The article concludes with a discussion on rolled ring tolerances and machining allowances.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003993
EISBN: 978-1-62708-185-6
... of trial and error. Currently, the use of computer-aided design (CAD), manufacture, and engineering is particularly significant in the accurate modeling and control of temperature and deformation, which can dramatically affect the grain size and final mechanical properties of forged superalloys...
Abstract
This article provides a discussion on forging methods, melting procedures, forging equipment, forging practices, grain refinement, and critical factors considered in forging process. It describes the different types of solid-solution-strengthened and precipitation-strengthened superalloys, namely, iron-nickel superalloys, nickel-base alloys, cobalt-base alloys, and powder alloys. The article discusses the microstructural mechanisms during hot deformation and presents processing maps for various superalloys. It concludes with a discussion on heat treatment of wrought heat-resistant alloy forgings.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003980
EISBN: 978-1-62708-185-6
... sockets that require simultaneous upsetting and piercing. Forgings that require center upsets (not at bar end) or offset upsets can also be made. In many cases, hot upsetting is used as a means of preparing stock for subsequent forging on a hammer or in a press. Hot upsetting is also occasionally used...
Abstract
This article discusses the operation of upset forging machines and selection of the machine size. It describes several types of upsetter heading tools and their materials. The article reviews the cold shearing and hot shearing methods for preparing blanks for hot upset forging. It deals with various upsetting processes: offset upsetting, double-end upsetting, upsetting with sliding dies, upsetting pipe and tubing, and electric upsetting. The article also provides information on hot forging and cold forging.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004000
EISBN: 978-1-62708-185-6
..., such as hammers, mechanical/screw presses, and hydraulic presses. Spin Forging Spin forging can also be used in titanium alloy forging fabrication, as with aluminum and other materials. This technique combines closed-die forging and computer numerically controlled (CNC) spin forgers and achieves very close...
Abstract
Titanium alloys are forged into a variety of shapes and types of forgings, with a broad range of final part forging design criteria based on the intended end-product application. This article begins with a discussion on the classes of titanium alloys, their forgeability, and factors affecting forgeability. It describes the forging techniques, equipment, and common processing elements associated with titanium alloy forging. The processing elements include the preparation of forging stock, preheating of the stock, die heating, lubrication, forging process, trimming and repair, cleaning, heat treatment, and inspection. The article presents a discussion on titanium alloy precision forgings and concludes with information on the forging of advanced titanium materials and titanium aluminides.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003987
EISBN: 978-1-62708-185-6
.... closed-die forging coining composite metals copper dimensional control hammers lubricants steels surface finish COINING is a closed-die forging operation, usually performed cold, in which all surfaces of the workpiece are confined or restrained, resulting in a well-defined imprint of the die...
Abstract
Coining is a closed-die forging operation in which all surfaces of the workpiece are confined or restrained, resulting in a well-defined imprint of the die on the workpiece. This article focuses on the coining equipment (hammers and presses), lubricants, and general and special die materials used in the coining process. It discusses the coinability of metals such as steels, copper, and composite metals. The article describes the control of dimensions, surface finishes, and weight of coined items. It concludes with a discussion on processing problems and solutions.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005146
EISBN: 978-1-62708-186-3
.... Superplastic forming is similar to vacuum forming of plastics. A computer system is used to control the gas pressure so that the part forms into the cavity at a constant strain rate. The Ti-6Al-4V material is generally used for this process; however, there are other alloys that work. The material needs to have...
Abstract
This article describes different types of titanium alloys, including alloy Ti-6Al-4V, alpha and near-alpha alloys, and alpha-beta alloys. It explains the formability of titanium alloys with an emphasis on the Bauschinger effect. The article provides information on the tool materials and lubricants used in the forming process. It provides information on the cold and hot forming, superplastic forming, and combination of superplastic forming/diffusion bonding. The article discusses the various forming processes of these titanium alloys, including press-brake forming, power (shear) spinning, rubber-pad forming, stretch forming, contour roll forming, creep forming, vacuum forming, drop hammer forming, joggling, and explosive forming.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005888
EISBN: 978-1-62708-167-2
... Computer-modeled dynamics of induction heating Ti-6Al-4V billet in a static vertical inductor using line frequency (60 Hz). Source: Ref 18 Fig. 26 Four-modular billet heating system. Source: Ref 2 Fig. 27 Power and coil modules can be combined inline to form a heating line and added...
Abstract
This article provides a rough estimate of the basic parameters, including coil efficiency, power, and frequency in induction heating of billets, rods, and bars. It focuses on the frequency selection for heating solid cylinders made of nonmagnetic metals, frequency selection when heating solid cylinders made from nonmagnetic alloys, and frequency selection when heating solid cylinders made from magnetic alloys. The article describes several design concepts that can be used for induction billet heating, namely, static heating and progressive/continuous heating. It presents the four major factors associated with the location and magnitude of subsurface overheating: frequency, refractory, final temperature, and power distribution along the heating line. The article summarizes the pros and cons of using a single power supply. It also reviews the design features of modular systems, and concludes with information on the temperature profile modeling software.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003453
EISBN: 978-1-62708-195-5
..., nondestructive testing of the structure is used to verify the strength of the concrete and the location of the reinforcement. The quality of the concrete can be investigated using acoustic impact (e.g., chain dragging), rebound hammers (Schmidt Hammer shown in Fig. 1 ), and penetration resistance (Windsor Probe...
Abstract
Rehabilitation is the process of repairing or modifying reinforced concrete structures to a desired useful condition. This article describes the operational steps for the structural assessment of reinforced concrete structures. It discusses the classification of composite materials reinforcing systems for strengthening reinforced concrete structures, such as shop-manufactured and field-manufactured structures. The article reviews the materials property requirements for designing reinforcing systems to strengthen the reinforced concrete structures. It discusses the fiber-reinforced polymer (FRP)-reinforced concrete behavior that depends on flexural, shear, or axial failures. Surface preparation procedures for rehabilitation techniques of reinforced concrete structures using bonded FRP materials are also discussed. The article provides information on the applications of rehabilitation of concrete structures. It explains data recording and acceptance criteria for rehabilitation of concrete structures with composite materials.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.9781627081979
EISBN: 978-1-62708-197-9