Skip Nav Destination
Close Modal
By
Ed Herman, Daniel J. Schaeffler, Evan J. Vineberg
By
Kenn Lachenberg, Scott Stecker, Karen Taminger, Gary La Flamme
By
John E. Allison, Mei Li, XuMing Su
By
Yan Lu, Milica Perisic, Albert Jones
Search Results for
computer-aided manufacturing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 719
Search Results for computer-aided manufacturing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Computer-aided design (CAD)/computer-aided manufacturing process chain for ...
Available to PurchasePublished: 30 November 2018
Fig. 25 Computer-aided design (CAD)/computer-aided manufacturing process chain for incremental sheet forming. Source: Ref 51
More
Image
Computer-aided design (CAD)/computer-aided manufacturing process chain for ...
Available to PurchasePublished: 01 January 2006
Fig. 7 Computer-aided design (CAD)/computer-aided manufacturing process chain for incremental sheet forming. Source: Ref 6
More
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003394
EISBN: 978-1-62708-195-5
..., the high cost and complexity of designing and manufacturing composites have largely offset the benefits of using these materials. To unlock the full potential of lightweight laminates, new software applications have been developed that transform general computer-aided design (CAD) systems into a high...
Abstract
Continuous fiber composite materials offer dramatic opportunities for producing lightweight laminates with tremendous performance capabilities. This article describes the kinematics of fabric deformation and explains the algorithms used in draping simulation. It discusses the basic components, such as laminate and ply, of continuous fiber composite. The article provides information on the core sample and ply analysis. It details producibility, flat-pattern evaluations, and laminate surface offset. The article discusses various interfaces, such as the structural analysis interface, the resin transfer molding interface, the fiber placement and tape-laying interface, and the laser projection interface.
Image
Generic additive manufacturing (AM) workflow. CAD, computer-aided drafting;...
Available to PurchasePublished: 30 June 2023
Fig. 2 Generic additive manufacturing (AM) workflow. CAD, computer-aided drafting; STL, stereolithography; PC, personal computer; HIP, hot isostatic pressing. Source: Ref 1
More
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002176
EISBN: 978-1-62708-188-7
... Abstract This article describes the basic functions that should be included when considering the relationship of computer-aided design (CAD)/computer-aided manufacturing (CAM) and machining. These include design, analysis, drafting, process planning, part programming, program verification, part...
Abstract
This article describes the basic functions that should be included when considering the relationship of computer-aided design (CAD)/computer-aided manufacturing (CAM) and machining. These include design, analysis, drafting, process planning, part programming, program verification, part machining, and inspection. The article provides information on hardware, data base, interfaces, and benefits of integrating machining with the CAD/CAM system of a manufacturing plant. It also provides an overview of direct, computer and, distributed numerical control, which are devoid of a number of problems inherent in conventional numerical control.
Book Chapter
Tooling and Assembly Quality Control
Available to PurchaseBook: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003433
EISBN: 978-1-62708-195-5
... Abstract Tooling and assembly methodologies for advanced composites have steadily improved as a result of advancements in materials, through the use of computer-aided design/computer-aided manufacturing technology, and through application of sophisticated design for manufacturing and assembly...
Abstract
Tooling and assembly methodologies for advanced composites have steadily improved as a result of advancements in materials, through the use of computer-aided design/computer-aided manufacturing technology, and through application of sophisticated design for manufacturing and assembly concepts. This article reviews techniques and technologies that are used to control the quality of tooling and assembly methods for composite components.
Book Chapter
CAD/CAM and Die Face Design in Sheet Metal Forming
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005150
EISBN: 978-1-62708-186-3
... involved in the thought process of direct engineering for formability are also explained. The article places considerable emphasis on the need for the designer to clearly define the die/tooling faces in the computer-aided design (CAD)/computer-aided manufacturing (CAM) system before the data are passed...
Abstract
This article describes grade designations of the various sheet steels used for draw forming. It discusses the specifications associated with most sheet draw forming materials. The article examines the behavior of stress- and strain-based forming limit curve (FLC). It provides a discussion on three separate frictional conditions acting in a draw die. The frictional conditions include the metal passing through a draw bead, the metal clamped in the binder, and the metal sliding across a die radius. The article also explains the basic steps in the vehicle development process. The steps involved in the thought process of direct engineering for formability are also explained. The article places considerable emphasis on the need for the designer to clearly define the die/tooling faces in the computer-aided design (CAD)/computer-aided manufacturing (CAM) system before the data are passed on to the construction functions.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002441
EISBN: 978-1-62708-194-8
... Abstract Modern, solids-based computer-aided design/computer-aided manufacturing (CAD/CAM) systems provide a good share of what is needed for companies to develop products using modern methods. This article provides a brief history and an overview of CAD technology. Form features combined...
Abstract
Modern, solids-based computer-aided design/computer-aided manufacturing (CAD/CAM) systems provide a good share of what is needed for companies to develop products using modern methods. This article provides a brief history and an overview of CAD technology. Form features combined with constraint parameters have greatly simplified how designers work with solid modelers to design parts and assemblies. The article describes four types of constraints: numeric, geometric, algebraic, and attributes. It presents a discussion on data associativity and assembly design used in CAD system. The article provides information on the applications of CAD systems, including integrated product development, drafting and product documentation, product visualization, mechanical analysis, and numerical control programming.
Image
Possible hierarchy of computer-aided design data sets for a typical automob...
Available to PurchasePublished: 01 January 2006
Fig. 18 Possible hierarchy of computer-aided design data sets for a typical automobile stamping. CMM, coordinate-measuring machine; CAM, computer-aided manufacturing
More
Image
Overview of the machine vision process. CCD, charge-coupled device; CMOS, c...
Available to PurchasePublished: 01 August 2018
Fig. 3 Overview of the machine vision process. CCD, charge-coupled device; CMOS, complementary metal oxide semiconductor; CAD, computer-aided design; CAM, computer-aided manufacturing
More
Book Chapter
Nontraditional Applications of Electron Beams
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005611
EISBN: 978-1-62708-174-0
... on the applications of high-frequency multibeam processes, namely, selective surface treatment, multiple-pool welding, and pre- and post-heat treating. computer-aided design dynamic beam deflection electron beam electron beam direct manufacturing system high-frequency multibeam process multiple-pool...
Abstract
This article focuses on the use of electron beam (EB) for near-net shape processing based on the wire feed material-delivery method. EB deposition processes start with a 3-D model designed in a computer-aided design (CAD) environment, where the deposition path and process parameters are generated. The article provides a description of the electron beam direct manufacturing (EBDM) system used for manufacturing of target parts with the aid of a case study. The control of the essential variables of dynamic beam deflection is also reviewed. The article also includes information on the applications of high-frequency multibeam processes, namely, selective surface treatment, multiple-pool welding, and pre- and post-heat treating.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002487
EISBN: 978-1-62708-194-8
... describes the structure and typical uses of computer-aided process planning and design-for-manufacturing programs. computer numerically controlled machining computer-aided process planning design-for-manufacturing program general-purpose machine tools machining machining design production...
Abstract
Machining or material removal processes are secondary manufacturing operations that are used to achieve precise tolerances or to impart controlled surface finishes to a part. This article summarizes rules for designing parts to improve machined part quality and reduce machining costs in mass and batch production environments. It discusses the factors affecting the total cost of a machining operation, including raw material costs, labor costs, and equipment costs. The article describes three types of machining systems, namely, general-purpose machine tools, production machining systems, and computer numerically controlled (CNC) machining systems. It reviews general design-for-machining rules that are applicable to all parts, regardless of the type of equipment used to produce them. Special considerations for production machining systems and CNC machining systems are discussed. The article describes the structure and typical uses of computer-aided process planning and design-for-manufacturing programs.
Book Chapter
Integrated Computational Materials Engineering
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005427
EISBN: 978-1-62708-196-2
... Abstract Integrated computational materials engineering refers to the use of computer simulations that integrate mathematical models of complex metallurgical processes with computer models used in component and process design. This article outlines an example of a computer-aided engineering...
Abstract
Integrated computational materials engineering refers to the use of computer simulations that integrate mathematical models of complex metallurgical processes with computer models used in component and process design. This article outlines an example of a computer-aided engineering tool, such as virtual aluminum castings (VAC), developed and implemented for quickly developing durable cast aluminum power train components. It describes the procedures for the model development of the VAC system. These procedures include linking the manufacturing process to microstructure, linking microstructures to mechanical properties, linking material properties to performance prediction, and model validation and integration into the engineering process. The article discusses the benefits of the VAC system in process selection, process optimization, and improving the component design criteria.
Book Chapter
Abbreviations and Symbols: Machining
Available to PurchaseBook: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0005701
EISBN: 978-1-62708-188-7
... Standardization EP extreme pressure CAM computer-aided manufacturing J joule Eq equation JIT just-in-time CAPP computer-aided process planning et al. and others CBN cubic boron nitride ETP electrolytic tough pitch CCPA Cemented Carbides Producers Association CE carbon equivalent Abbreviations and Symbols I 907 k...
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.9781627081887
EISBN: 978-1-62708-188-7
Book Chapter
Additive Manufacturing Data Integration and Recommended Practice
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006965
EISBN: 978-1-62708-439-0
... Abstract Additive manufacturing (AM) creates parts layer by layer directly from three-dimensional computer-aided design data. This article discusses systematic ways to address the challenges in AM data integration by exploring various AM-specific data-integration scenarios that can improve...
Abstract
Additive manufacturing (AM) creates parts layer by layer directly from three-dimensional computer-aided design data. This article discusses systematic ways to address the challenges in AM data integration by exploring various AM-specific data-integration scenarios that can improve the current AM ecosystem. Representative AM data sources are also described. A reference framework that captures the heterogenous AM data sources and existing data-integration mechanisms are used. General data-integration practices—based on existing manufacturing data and lab information system integration experiences—are recommended to automate AM data flow, operations, and development. Lastly, the article discusses the seven steps in the big-data-integration workflow.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003005
EISBN: 978-1-62708-200-6
... the synergy between the elements of the materials selection process and presents a general comparison of material properties. Finally, the article provides a short note on computer aided materials selection systems, which help in proper archiving of materials selection decisions for future reference...
Abstract
The selection of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This article classifies various engineered materials, including ferrous alloys, nonferrous alloys, ceramics, cermets and cemented carbides, engineering plastics, polymer-matrix composites, metal-matrix composites, ceramic-matrix and carbon-carbon composites, and reviews their general property characteristics and applications. It describes the synergy between the elements of the materials selection process and presents a general comparison of material properties. Finally, the article provides a short note on computer aided materials selection systems, which help in proper archiving of materials selection decisions for future reference.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002174
EISBN: 978-1-62708-188-7
.... , Computer Integrated Manufacturing , Prentice-Hall , 1986 3. Pressman R.S. and Williams J.E. , Numerical Control and Computer-Aided Manufacturing , John Wiley & Sons , 1977 4. Olesten N.O. , Numerical Control , Wiley-Interscience , 1970 5. Groover M.P...
Abstract
This article discusses the evolution of computer numerical control and direct numerical control for machine tools. It describes the fundamentals and advantages of numerical control (NC) systems. The article reviews the manual or computer assisted off-line programming methods for programming the tools with the aid of the automatically programmed tool language. It also explains point-to-point and continuous-path or contouring of NC systems and the adaptive systems used for NC.
Book Chapter
Abbreviations and Symbols: Materials Selection and Design
Available to PurchaseSeries: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0005752
EISBN: 978-1-62708-194-8
... Coulomb; heat capacity C-C carbon-carbon CAD computer-aided design CAE computer-aided engineering CAM computer-aided manufacturing (:APP computer-aided process planning CARES Ceramic Analysis and Reliability Evaluation of Structures cd candela DBTT ductile-brittle transition temperature de direct current...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005535
EISBN: 978-1-62708-197-9
... Abstract Solid modeling is the act of creating the three-dimensional models of various components and system using a computer-aided design (CAD) tool. This article describes the fundamental approaches of solid modeling, such as manufacturing operation simulation, parametric approach...
Abstract
Solid modeling is the act of creating the three-dimensional models of various components and system using a computer-aided design (CAD) tool. This article describes the fundamental approaches of solid modeling, such as manufacturing operation simulation, parametric approach, and reference entities. It discusses the application of solid modeling systems to create expressions or variables and various surfaces for components. The use of high-end CAD systems to afford a number of sheet metal functions is reviewed. The article explains the explicit-parametric modeling and model verification for the solid modeling. It provides information on the application of solid modeling in associativity and concurrent engineering, product lifecycle management, and collaborative engineering.
1