Skip Nav Destination
Close Modal
Search Results for
computer hardware
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 308 Search Results for
computer hardware
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1997
Fig. 1 Growth in computer hardware performance, 1970 to 1995. (a) Memory chip capacity doubles every 1.5 years. (b) Clock rate. (c) Peak single-process megaflops. Source: Ref 7
More
Image
Published: 01 December 2009
Fig. 1 Growth in computer hardware performance, 1970 to 1995. (a) Memory chip capacity doubles every 1.5 years. (b) Clock rate. (c) Peak single-process megaflops. Source: Ref 7
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001470
EISBN: 978-1-62708-173-3
... A neural network system (NNS) is a computer hardware and software technique that simulates an interconnected network of biological neurons, similar to a portion of the human brain. A neural network can be trained with given patterns, called training sets. After the NNS “learns” from the training set...
Abstract
Efforts in improving the efficiency of automated equipment lead to combining automatic joining equipment with a modem computer technique eventually known as artificial intelligence (intelligent automation) that usually includes an off-line planning system and a real-time adaptive control system connected through a computer communications interface. This article focuses on the application of intelligent automation system to arc welding, called WELDEXCELL, and other joining processes. An outline of the interface between off-line planners and real-time control systems is also provided.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002176
EISBN: 978-1-62708-188-7
... machining, and inspection. The article provides information on hardware, data base, interfaces, and benefits of integrating machining with the CAD/CAM system of a manufacturing plant. It also provides an overview of direct, computer and, distributed numerical control, which are devoid of a number...
Abstract
This article describes the basic functions that should be included when considering the relationship of computer-aided design (CAD)/computer-aided manufacturing (CAM) and machining. These include design, analysis, drafting, process planning, part programming, program verification, part machining, and inspection. The article provides information on hardware, data base, interfaces, and benefits of integrating machining with the CAD/CAM system of a manufacturing plant. It also provides an overview of direct, computer and, distributed numerical control, which are devoid of a number of problems inherent in conventional numerical control.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005538
EISBN: 978-1-62708-197-9
... conditions. The article describes the role of input data and boundary conditions for process simulations. It provides information on the critical enablers of computational materials engineering, such as the computational speed, computational materials engineering software/hardware supply chain, and cost...
Abstract
This article discusses process simulation applications such as casting, powder metallurgy, machining, surface engineering, heat treatment, and joining. The implementation of modeling and simulation tools requires accurate descriptions of material properties and process boundary conditions. The article describes the role of input data and boundary conditions for process simulations. It provides information on the critical enablers of computational materials engineering, such as the computational speed, computational materials engineering software/hardware supply chain, and cost structure for virtual versus physical manufacturing and analysis.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006945
EISBN: 978-1-62708-387-4
.... It also covers other useful hardware, such as computer-aided tomography (CAT) and micro-computer-aided tomography (micro-CAT) instruments. The article introduces some of the fracture image postprocessing methods and software, including image registration or alignment, focus stacking, Z-stacking, focal...
Abstract
This article presents a basic overview of technology-driven advances in the imaging of primarily metallic fracture surfaces. It describes various types of microscopes, including scanning electron, dual-beam, ion source, and transmission electron microscopes, and their capabilities. It also covers other useful hardware, such as computer-aided tomography (CAT) and micro-computer-aided tomography (micro-CAT) instruments. The article introduces some of the fracture image postprocessing methods and software, including image registration or alignment, focus stacking, Z-stacking, focal plane merging, and image stitching.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003760
EISBN: 978-1-62708-177-1
.... The article also discusses the techniques for reconstruction and visualization of 3D microstructures with advanced computer software and hardware. 3D images atom probe tomography computer hardware computer software data reconstruction data visualization direct-imaging methods focused ion beam...
Abstract
Three-dimensional microscopy can be used to reveal the shape, distribution, and connectivity of three-dimensional (3D) features that lie buried within an opaque material. This article discusses several experimental techniques that can be used to generate 3D images. These include serial sectioning, focused ion beam tomography, atom probe tomography, and X-ray microtomography. Nine case studies are presented that represent the work of the various research groups currently working on 3D microscopy using serial sectioning and illustrate the variants of the basic experimental techniques. The article also discusses the techniques for reconstruction and visualization of 3D microstructures with advanced computer software and hardware.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001729
EISBN: 978-1-62708-178-8
...-frequency generator and associated electronics; spectrometers, such as polychromators and monochromators; detection electronics and interface; and the system computer with appropriate hardware and software. The article also describes the uses of direct-current plasma, and provides examples...
Abstract
Inductively coupled plasma atomic emission spectroscopy (ICP-AES) is an analytical technique for elemental determinations in the concentration range of major to trace based on the principles of atomic spectroscopy. This article provides a description of the basic atomic theory, and explains the analytical procedures and various interference effects of ICP, namely, spectral, vaporization-atomization, and ionization. It provides a detailed discussion on the principal components of an analytical ICP system, namely, the sample introduction system; ICP torch and argon gas supplies; radio-frequency generator and associated electronics; spectrometers, such as polychromators and monochromators; detection electronics and interface; and the system computer with appropriate hardware and software. The article also describes the uses of direct-current plasma, and provides examples of the applications of ICP-AES.
Image
in Methodologies and Implementation of Laser Powder-Bed Fusion Process Control
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 15 Open-platform additive manufacturing (AM) process control framework that consists of four AM software modules (left side of figure) and four hardware modules (right side of figure). The interfaces (1–3) of each software module and the functionalities (a–d) of each hardware module
More
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002444
EISBN: 978-1-62708-194-8
... becoming available, and petaflop computers (peta = 1000 trillion) are being planned for the next decade ( Ref 10 ). Fig. 1 Growth in computer hardware performance, 1970 to 1995. (a) Memory chip capacity doubles every 1.5 years. (b) Clock rate. (c) Peak single-process megaflops. Source: Ref 7...
Abstract
Computational fluid dynamics (CFD) is reserved for computationally intensive three-dimensional simulations of thermal fluids systems where nonlinear momentum transport plays an important role. This article presents the governing equations of fluid dynamics and an introduction to the CFD techniques for their solution. It introduces discretization techniques that are used by finite-difference, finite-volume, finite-element, spectral, and some particle methods. Associated concepts of numerical stability and accuracy are also reviewed. The article describes two approaches for grid generation with complex geometries: the use of unstructured grids and the use of special differencing methods on structured grids. The article describes the four-step procedures of the CFD process: geometry acquisition, grid generation and problem specification, flow solution, and post-processing and synthesis. It provides information on the applications of the engineering CFD. Issues and directions for the engineering CFD are also described.
Image
Published: 01 December 2009
Fig. 5 Engineering component design processes. Left side depicts a hardware-based approach; right side is an analysis-(computational fluid dynamics, or CFD-) based approach. CAD, computer-aided design
More
Image
Published: 01 February 2024
Fig. 83 Engineering design process. Left side depicts a hardware-based approach; right side is an analysis (computational fluid dynamics)-based approach. CAD, computer-aided design. Source: Ref 80
More
Image
Published: 15 December 2019
and associated electronics, the spectrometer with the detection electronics, and the system computer with appropriate hardware and software.
More
Book Chapter
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005426
EISBN: 978-1-62708-196-2
... teraflop (tera = trillion) are now available, and petaflop computers (peta = 1000 trillion) are being planned ( Ref 10 ). Fig. 1 Growth in computer hardware performance, 1970 to 1995. (a) Memory chip capacity doubles every 1.5 years. (b) Clock rate. (c) Peak single-process megaflops. Source: Ref 7...
Abstract
Computational fluid dynamics (CFD) is a computationally intensive three-dimensional simulation of thermal fluids systems where non-linear momentum transport plays an important role. This article presents the governing equations of fluid dynamics and an introduction to the CFD techniques. It introduces some common techniques for discretizing the fluid-flow equations and methods for solving the discrete equations. These include finite-difference methods, finite-element methods, spectral methods, and computational particle methods. The article describes the approaches for grid generation with complex geometries. It discusses the four-step procedures used in the CFD process for engineering design: geometry acquisition, grid generation and problem specification, flow solution, and post-processing and synthesis. The article also provides information on the engineering applications of the CFD. It concludes with a discussion on issues and directions for engineering CFD.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002174
EISBN: 978-1-62708-188-7
... Abstract This article discusses the evolution of computer numerical control and direct numerical control for machine tools. It describes the fundamentals and advantages of numerical control (NC) systems. The article reviews the manual or computer assisted off-line programming methods...
Abstract
This article discusses the evolution of computer numerical control and direct numerical control for machine tools. It describes the fundamentals and advantages of numerical control (NC) systems. The article reviews the manual or computer assisted off-line programming methods for programming the tools with the aid of the automatically programmed tool language. It also explains point-to-point and continuous-path or contouring of NC systems and the adaptive systems used for NC.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002436
EISBN: 978-1-62708-194-8
... to an acceptable minimum. It has been demonstrated that hardware systems approaching a “failure-free” condition can be produced when actions are taken at all levels that are based on: Attention to past experiences with similar systems Availability of risk information for all project personnel A sound...
Abstract
Risk and hazard analysis can be effectively used during design reviews to provide valuable feedback to the design to avoid failures. This article discusses the types of risks, namely, real risk, statistical risk, predicted risk, and perceived risk. It describes the principle and technical methods of risk/hazard analysis practiced in the industry to identify possible hazards and the resources necessary to avoid or reduce risks. These methods include the failure mode and effect analysis, fault tree analysis, event tree analysis, risk/benefit analysis, safety analysis, and probabilistic estimates.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003519
EISBN: 978-1-62708-180-1
..., modem speed, specification turnaround time, computer-chip speed, or acquisition frequency. These items usually are well defined and, in most cases, mutually agreed upon by the parties involved. Finally, specifications requirements, such as mechanical properties, plating thickness, weight, and coating...
Abstract
This article reviews the most common reasons for failures and the purpose of a failure investigation. It discusses the nine steps for the organization of a good failure investigation. The three basic tools that are helpful in any failure investigation, namely, a fault tree, a failure mode assessment chart, and a technical plan for resolution chart, are reviewed. The article briefly describes failure investigation pitfalls and concludes with information on the other common tools used for failure investigation and root cause determination.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005425
EISBN: 978-1-62708-196-2
... that is gaining momentum is the increasing interest of academic and research institutions in the development of fundamental material behavior and process models for the manufacture of metal products. This may be due to factors such as: Widespread availability of inexpensive computer hardware and software...
Abstract
This article provides a brief historical perspective, a classification of metallurgical processes, basic model development efforts, and an overview of the potential future directions for the modeling of metals processing. It describes the classification of material behavior models, which can be grouped broadly into three classes: statistical, phenomenological, and mechanistic models. The article also presents an overview of the potential directions for the modeling of metals processing.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006439
EISBN: 978-1-62708-190-0
... Abstract Machine vision, also referred to as computer vision or intelligent vision, is a means of simulating the image recognition and analysis capabilities of the human eye and brain system with digital techniques. The machine vision functionality is extremely useful in inspection, supervision...
Abstract
Machine vision, also referred to as computer vision or intelligent vision, is a means of simulating the image recognition and analysis capabilities of the human eye and brain system with digital techniques. The machine vision functionality is extremely useful in inspection, supervision, and quality control applications. This article presents a variety of machine vision functions for different purposes and provides a comparison of machine and human vision capabilities in a table. It discusses the processes of a machine vision system: image acquisition, image preprocessing, image analysis, and image interpretation. The article provides information on the uses of machine vision systems in three categories of manufacturing applications: visual inspection, identification of parts, and guidance and control applications.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003250
EISBN: 978-1-62708-199-3
... and known compositions. All modern instruments are equipped with computers to facilitate this calibration and measurement process. The use of progressively more powerful computer hardware and software has substantially decreased the need for standards with compositions tailored to specific classes of alloys...
Abstract
The overall chemical composition of metals and alloys is most commonly determined by X-ray fluorescence (XRF) and optical emission spectroscopy (OES), and combustion and inert gas fusion analysis. This article provides information on the capabilities, uses, detection threshold and precision methods, and sample requirements. The amount of material that needs to be sampled, operating principles, and limitations of the stated methods are also discussed.
1