Skip Nav Destination
Close Modal
Search Results for
computational algorithm
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 320 Search Results for
computational algorithm
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Modeling of Deformation Processes—Slab and Upper Bound Methods
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 7 Computational algorithm for the incremental upper bound method. The discrete elements are chosen to represent workpiece geometry—plane strain, axisymmetric, or three-dimensional (blocks)—and the calculation updated as the die compresses the workpiece incrementally. Source: Ref 34
More
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005898
EISBN: 978-1-62708-167-2
... in the transport equation and computational schemes for the fluid dynamics equation. The aspects of computational algorithms for specific magnetohydrodynamic problems with mutual influence of the magnetic field and melt flow due to the changing shape of the free surface are also considered. The article illustrates...
Abstract
This article focuses on the basic turbulent flow, and the thermal, mass-transfer, and hydrodynamic phenomena for use in modeling physical processes during induction melting. It provides a discussion on transport phenomena equations that includes the approximation of convective terms in the transport equation and computational schemes for the fluid dynamics equation. The aspects of computational algorithms for specific magnetohydrodynamic problems with mutual influence of the magnetic field and melt flow due to the changing shape of the free surface are also considered. The article illustrates the application of the basic equations and approaches formulated for electromagnetic field and melt turbulent flow for the numerical study of an induction crucible furnace.
Image
Published: 01 December 2009
Image
Published: 01 November 1995
Fig. 40 Data requirements of the TCARES (toughened ceramics analysis and reliability evaluation of structures) computer algorithm for analyzing component reliability
More
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005892
EISBN: 978-1-62708-167-2
... algorithms and multiobjective evolutionary strategy algorithms associated with evolutionary computing. The article provides information on field-based optimization problems. It also discusses the design of the pancake inductor that implies the solution of coupled electromagnetic and thermal fields, along...
Abstract
Optimization plays a key role in the design of any structure or system, and electromagnetic devices are no exception. This article provides a description of the formulation of a design problem, and provides a review of the Paretian optimality. It focuses on nondominating sorting algorithms and multiobjective evolutionary strategy algorithms associated with evolutionary computing. The article provides information on field-based optimization problems. It also discusses the design of the pancake inductor that implies the solution of coupled electromagnetic and thermal fields, along with the use of optimal design procedures, to identify the best possible device or process.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002446
EISBN: 978-1-62708-194-8
... Abstract This article discusses tools that are used for the systematic optimization of engineering designs. It focuses on the practical application of optimization technology in a computer-aided engineering environment. The article presents numerical optimization algorithms and provides some...
Abstract
This article discusses tools that are used for the systematic optimization of engineering designs. It focuses on the practical application of optimization technology in a computer-aided engineering environment. The article presents numerical optimization algorithms and provides some background on how these algorithms make decisions when searching for the optimal design. It also provides information on structural optimization, topology optimization, materials processing optimization, multidisciplinary optimization, and global optimization.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005505
EISBN: 978-1-62708-197-9
... for problem 1 goes at the expense of the efficiency to solve all other problems 2, … , n . The minimum value of f 1 is also found by method B, but this method is not as efficient as the “lucky guess” method. Method B is a genetic algorithm. In its first iteration, method B first computes a number...
Abstract
The process of optimization involves choosing the best solution from a pool of potential candidate solutions. This article provides a description of some classes of problems and the optimization methods that solve them. These problems include the deterministic single-objective problem, the deterministic multiobjective problem, and the nondeterministic, stochastic optimization problem. The article presents several complementary approaches to solve a wide variety of single-objective and multiobjective mechanical engineering applications. Multiobjective optimization study and stochastic optimization studies are also discussed.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005879
EISBN: 978-1-62708-167-2
... Abstract Induction heating computations deal with a multiphysics problem containing analysis of several coupled physical fields such as electromagnetic, temperature, mechanical, and metallurgical. In order to solve coupled electromagnetic-temperature field problems, it is necessary to develop...
Abstract
Induction heating computations deal with a multiphysics problem containing analysis of several coupled physical fields such as electromagnetic, temperature, mechanical, and metallurgical. In order to solve coupled electromagnetic-temperature field problems, it is necessary to develop suitable algorithms and numerical procedures, which make it possible to deal with these nonlinear coupled problems. This article focuses on the most common approaches to coupled electromagnetic and heat transfer problems, namely, weak-, quasi-, and hard-coupled formulations.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005407
EISBN: 978-1-62708-196-2
... conjugate gradient, variable learning rate, and Levenberg-Marquardt. These training algorithms are standard. Their mathematics can be found in many NN books. In software, the training algorithms are implemented in the computer code. The method used in this article is the Levenberg-Marquardt algorithm...
Abstract
Neural-network (NN) modeling is most suitable for simulations of correlations that are hard to describe or cannot be accurately predicted by physical models. This article describes the principles and procedures of NN modeling. It discusses the use of NN modeling in general organization of software and graphical user interfaces. The article also provides information on the ways to improve and upgrade the NN models.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006257
EISBN: 978-1-62708-169-6
..., and microstructural scale for homogenization of metal alloys. It also discusses the CALPHAD software to optimize the homogenization heat treatment and the Scheil module of the commercial thermodynamic modeling software. castings computational algorithm heat treatment homogenization incipient melt point...
Abstract
Homogenization heat treatment can be useful for improving the performance and life of an alloy while in service or for improving the processability during fabrication and hot working. This article describes the identification of incipient melt point, slowest-diffusing elements, and microstructural scale for homogenization of metal alloys. It also discusses the CALPHAD software to optimize the homogenization heat treatment and the Scheil module of the commercial thermodynamic modeling software.
Image
in Computational Modeling of Induction Melting and Experimental Verification
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 37 Flowchart of semi-implicit method for pressure linked equation (SIMPLE) algorithm used to compute velocity component and pressure on a staggered grid
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003394
EISBN: 978-1-62708-195-5
... Abstract Continuous fiber composite materials offer dramatic opportunities for producing lightweight laminates with tremendous performance capabilities. This article describes the kinematics of fabric deformation and explains the algorithms used in draping simulation. It discusses the basic...
Abstract
Continuous fiber composite materials offer dramatic opportunities for producing lightweight laminates with tremendous performance capabilities. This article describes the kinematics of fabric deformation and explains the algorithms used in draping simulation. It discusses the basic components, such as laminate and ply, of continuous fiber composite. The article provides information on the core sample and ply analysis. It details producibility, flat-pattern evaluations, and laminate surface offset. The article discusses various interfaces, such as the structural analysis interface, the resin transfer molding interface, the fiber placement and tape-laying interface, and the laser projection interface.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003514
EISBN: 978-1-62708-180-1
... components to design for appropriate levels of safety. Computational resources are becoming less of an impediment through enhancements in computational algorithms and computer efficiency. Factor of safety approaches may not give the desired reliability or may lead to overdesigned structures...
Abstract
This article describes the historical background, uncertainties in structural parameters, classifications, and application areas of probabilistic analysis. It provides a discussion on the basic definition of random variables, some common distribution functions used in engineering, selection of a probability distribution, the failure model definition, and a definition of the probability of failure. The article also explains the solution techniques for special cases and general solution techniques, such as first-second-order reliability methods, the advanced mean value method, the response surface method, and Monte Carlo sampling. A brief introduction to importance sampling, time-variant reliability, system reliability, and risk analysis and target reliabilities is also provided. The article examines the various application problems for which probabilistic analysis is an essential element. Examples of the use of probabilistic analysis are presented. The article concludes with an overview of some of the commercially available software programs for performing probabilistic analysis.
Image
Published: 31 October 2011
Fig. 6 (a) Technique to perform computational heat- and mass-transfer calculations for fillet welds using the coordinate transformation algorithm. (b) Typical result of such simulation shows the weld pool curvature as well as transients of temperature distributions. (c) Comparisons
More
Image
Published: 01 November 2010
Fig. 6 (a) Technique to perform computational heat- and mass-transfer calculations for fillet welds using the coordinate transformation algorithm. (b) Typical result of such simulation shows the weld pool curvature as well as transients of temperature distributions. (c) Comparisons
More
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005428
EISBN: 978-1-62708-196-2
... by comparing the observed behavior quantitatively with theory. The industrial applications of the model are also discussed. The article also provides a wide selection of the algorithms for implementing the Potts model, such as boundary-site models, n -fold way models, and parallel models, which are needed...
Abstract
The misorientation of a boundary of a growing grain is defined not only by its crystallography but also by the crystallography of the grain into which it is growing. This article focuses on the Monte Carlo Potts model that is typically used to model grain growth, Zener-Smith pinning, abnormal grain growth, and recrystallization. It introduces the basics of the model, providing details of the dynamics, simulation variables, boundary energy, boundary mobility, pinning systems, and stored energy. The article explains how to incorporate experimental parameters and how to validate the model by comparing the observed behavior quantitatively with theory. The industrial applications of the model are also discussed. The article also provides a wide selection of the algorithms for implementing the Potts model, such as boundary-site models, n -fold way models, and parallel models, which are needed to simulate large-scale industrial applications.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005893
EISBN: 978-1-62708-167-2
... nonlinear, interrelated electrothermal equations and to obtain precise quantitative results to compute optimal control algorithms. Cost Criteria A systems approach should be used when choosing the most appropriate cost function for a particular IHI optimal control problem. New possibilities emerge...
Abstract
This article describes the effects of furnace atmospheric elements, including air, water vapor, molecular nitrogen, carbon dioxide, and carbon monoxide, on steels. It provides useful information on six groups of commercially important prepared atmospheres classified by the American Gas Association on the basis of the method of preparation or on the original constituents employed. These groups are designated and defined as follows: Class 100, exothermic base; Class 200, prepared nitrogen base; Class 300, endothermic base; Class 400, charcoal base; Class 500, exothermic-endothermic base; and Class 600, ammonia base. These are subclassified and numerically designated to indicate variations in the method by which they are prepared. The article also contains a table that lists significant furnace atmospheres and typical applications.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005432
EISBN: 978-1-62708-196-2
... Recrystallization Using a Cellular Automaton Model , Scr. Mater. , Vol 52 , 2005 , p 851 – 856 16. Ghosh S. , Gabane P. , Bose A. , and Chakraborti N. , Modeling of Recrystallization in Cold Rolled Copper Using Inverse Cellular Automata and Genetic Algorithms , Comput. Mater. Sci...
Abstract
This article examines how cellular automaton (CA) can be applied to the simulation of static and dynamic recrystallization. It describes the steps involved in the CA simulation of recrystallization. These include defining the CA framework, generating the initial microstructure, distributing nuclei of recrystallized grains, growing the recrystallized grains, and updating the dislocation density. The article concludes with information on the developments in CA simulations.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006994
EISBN: 978-1-62708-439-0
... Abstract Process optimization is the discipline of adjusting a process to optimize a specified set of parameters without violating engineering constraints. This article reviews data-driven optimization methods based on genetic algorithms and stochastic models and demonstrates their use...
Abstract
Process optimization is the discipline of adjusting a process to optimize a specified set of parameters without violating engineering constraints. This article reviews data-driven optimization methods based on genetic algorithms and stochastic models and demonstrates their use in powder-bed fusion and directed energy deposition processes. In the latter case, closed-loop feedback is used to control melt pool temperature and cooling rate in order to achieve desired microstructure.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002476
EISBN: 978-1-62708-194-8
... for tensile strength. It reviews life prediction reliability models used for predicting the life of a component with complex geometry and loading. The article outlines reliability algorithms and presents several applications to illustrate the utilization of these reliability algorithms in structural...
Abstract
Brittle materials, such as ceramics, intermetallics, and graphites, are increasingly being used in the fabrication of lightweight components. This article focuses on the design methodologies and characterization of certain material properties. It describes the fundamental concepts and models associated with performing time-independent and time-dependent reliability analyses for brittle materials exhibiting scatter in ultimate strength. The article discusses the two-parameter and three-parameter Weibull distribution for representing the underlying probability density function for tensile strength. It reviews life prediction reliability models used for predicting the life of a component with complex geometry and loading. The article outlines reliability algorithms and presents several applications to illustrate the utilization of these reliability algorithms in structural applications.
1