Skip Nav Destination
Close Modal
Search Results for
compressor oils
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 70 Search Results for
compressor oils
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006016
EISBN: 978-1-62708-172-6
..., QC applies to: Equipment: Quality control includes verifying that the equipment mobilized to the site (e.g., compressors, blasting and coating application equipment, etc.) meets specified requirements. Materials: Quality control includes verification that the specified materials (e.g...
Abstract
This article discusses the concepts of quality control (QC) and quality assurance (QA), and clarifies the differences and similarities in the roles and responsibilities of QC and QA personnel. It describes the inspection procedures used to verify proper surface preparation and installation of the protective coating/lining system. Prior to beginning surface-preparation operations, many specifications will require a presurface-preparation inspection to verify the correction of fabrication defects and removal of surface contamination such as grease, oil, cutting compounds, lubricants, and chemical contaminants. When inspecting concrete prior to coating installation, three areas of concern exist: surface roughness, moisture content in concrete, and acidity/alkalinity of the surface. The article provides information on the industry standards for assessing surface cleanliness. It details postcoating application quality requirements, including measuring of dry-film thickness, assessing intercoat cleanliness, verifying minimum and maximum recoat intervals, performing holiday/pinhole detection, conducting cure/hardness testing, and assessing adhesion of the applied coating system.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001276
EISBN: 978-1-62708-170-2
... below −18 °C (0 °F) MIL-L-17331 Lubricating oil, steam turbine (noncorrosive) Petroleum oil plus inhibitors Lubrication of main turbine gears, auxiliary turbines, air compressors, hydraulic equipment MIL-L-19224 (Grades A, B, and C) Lubricating oil, mineral, preservative; pour point −34 °C...
Abstract
Rust-preventive compounds are removable coatings used for the protection of the surfaces of iron, steel, coated or galvanized products, and other alloys. This article describes the basic parts of rust-preventive compounds, namely, carrier, film former, polar materials, and specialty additives. It explains types of rust-preventive compounds, including dry films and water-based dry films. The article also discusses the methods of application of various compounds, such as petrolatum compounds and emulsion compounds. It contains tables that provide information on the characteristics, applications, and physical properties of rust-preventive materials covered by military specifications. Finally, the article describes the various considerations and parameters for selecting rust-preventive materials.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003110
EISBN: 978-1-62708-199-3
... M4504 … Ferrite and tempered pearlite (f) Compressor crankshafts and hubs M5003 … Ferrite and tempered pearlite (f) For selective hardening: planet carriers, transmission gears, and differential cases M5503 … Tempered martensite For machinability and improved response to induction...
Abstract
Malleable iron is a type of cast iron that has most of its carbon in the form of irregularly shaped graphite nodules. This article tabulates the typical composition of malleable iron and specifications, and applications of malleable iron castings. It discusses the metallurgical control of malleable irons with emphasis on its composition and heat treatment. The article provides information on the specifications and mechanical properties of different types of malleable irons, such as ferritic, pearlitic, and martensitic malleable irons.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003143
EISBN: 978-1-62708-199-3
...; bal Ti. This is a medium-strength alloy with the highest maximum service temperature (600 °C, or 1200 °F) of any conventional, commercial titanium alloy. Its major applications include compressor disks and blades for the aerospace gas turbine engine industry. Ti-6-4; Ti-64; Ti-6-4 ELI; Ti-64...
Abstract
This article is a comprehensive collection of properties, compositions, and applications of standard grades of titanium and selected titanium alloys. It provides data regarding the common names, Unified Number System numbers, composition limits, typical uses with service temperatures, precautions in use, and general corrosion behavior of each. The applications of titanium alloys include aerospace, gas turbine engines and prostheses. Further, the article graphically presents a comparative study of fatigue, creep and tensile properties of various titanium alloys.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001324
EISBN: 978-1-62708-170-2
... filter system for both chambers, primary condenser coils, freeboard chiller coils, dehumidifier coils, a water separator, and a freon compressor. Some systems include an optional ultrasonic unit. The boil chamber generates vapors that rise to the point where the primary condenser coils suppress the...
Abstract
The chemicals that have been used in traditional vapor degreasing have serious health and environmental hazards that have prompted the search for modified and alternative techniques. This article provides a detailed discussion on the regulatory mandates that affect the use of industrial degreasing methods. It describes the aqueous degreasing technique, which forms an attractive alternative to the traditional vapor degreasing process. The article includes information on the materials and equipment used in the process, and discusses the advantages and disadvantages of hot and dip tank systems of aqueous degreasing. It explains how to convert an existing vapor degreaser to an aqueous cleaning system.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001274
EISBN: 978-1-62708-170-2
... as it is formed and render it harmless to the metal. In some instances, however, zinc-phosphate processes, intended for use with rust-inhibiting oils for corrosion resistance or manganese-phosphate treatments, can cause hydrogen embrittlement because they may contain a minimum amount of depolarizers...
Abstract
This article focuses on the types, composition, and applications of phosphate coatings and describes the characteristics of phosphate-coated ferrous and nonferrous materials, including steel and aluminum. It addresses five successive process fundamentals: cleaning, rinsing, phosphating, rinsing after phosphating, and chromic acid rinsing. The article describes the techniques for controlling the chemical composition of various phosphating solutions. It discusses the equipment and factors that influence equipment requirements in immersion and spray systems. The article also describes the controlling procedures of coating weight and crystal size. It provides guidelines for choosing phosphate coatings based on application, coating weight requirements, and recommended process parameters. The article concludes with a discussion on safety precautions and the treatment of effluents from phosphating plants.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006038
EISBN: 978-1-62708-172-6
... withstand extremes of high and low operating temperatures. Elevated operating temperatures are caused by such operations as pumping hot fluids (high-viscosity crude oil to 150 °C, or 300 °F) and transporting natural gas leaving a compressor station. Compressor stations ( Fig. 12 ) are spaced along a...
Abstract
This article describes the coating materials, surface-preparation requirements, and application techniques used to protect underground pipelines. It provides a valuable insight into the types of polymer-based coatings that are both cost-effective and widely accepted in the pipeline industry.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001277
EISBN: 978-1-62708-170-2
... painting consists of a spray gun, a container for the paint, an air compressor, an air regulator or transformer, connecting pipes and hoses, a spray booth, and an air filter and moisture trap. Spray guns are available commercially to fit virtually any requirement. An air cap at the front of the gun...
Abstract
Painting is a generic term for the application of a thin organic coating to the surface of a material for decorative, protective, or functional purposes. This article provides a detailed account of the types and selection factors of paints and the various application methods, including conventional air atomized, airless, and electrostatic spray; roller coating; dip coating; flow coating; curtain coating; tumble coating; electrocoating; and powder coating. Surface preparation methods and prepaint treatments for coating systems are also discussed. The article includes information on quality control procedures, causes of paint film defects, cost calculation, and safety and environmental precautions. The composition and characteristics of organic coatings, coating system selection factors, the types of paints for structural steel, and the applications of paint on structural steel are also reviewed.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005326
EISBN: 978-1-62708-187-0
... castings is stipulated 45008 45006 50005 60004 70003 80002 90001 Automotive ASTM A 602 M3210 Ferritic For low-stress parts requiring good machinability: steering-gear housings, carriers, and mounting brackets M4504 Ferrite and tempered pearlite (a) Compressor...
Abstract
Malleable iron is a cast ferrous metal that is initially produced as white cast iron and is then heat treated to convert the carbon-containing phase from iron carbide to a nodular form of graphite called temper carbon. This article provides a discussion on the melting practices, heat treatment, microstructure, production technologies, mechanical properties, and applications of ferritic, pearlitic, and martensitic malleable iron.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003973
EISBN: 978-1-62708-185-6
... job-shop hardware forging, forging of brass and aluminum parts, precision forging of turbine and compressor blades, hand tools, and gearlike parts. Recently, screw presses have also been introduced in North America for a wide range of applications, notably, for forging steam turbine and jet engine...
Abstract
Hammers and high-energy-rate forging machines are classified as energy-restricted machines as they deform the workpiece by the kinetic energy of the hammer ram. This article provides information on gravity-drop hammers, power-drop hammers, die forger hammers, counterblow hammers, and computer-controlled hammers. It describes the three basic designs of high-energy-rate forging (HERF) machines: the ram and inner frame, two-ram, and controlled energy flow. The article reviews forging mechanical presses, hydraulic presses, drive presses, screw presses, and multiple-ram presses.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... operating envelope of the aircraft. Another example is inlet-flow blockage on a high-performance air compressor resulting in excessive cyclic loads applied to the blades, causing blade ( Fig. 21 , 22 ) and drive shaft ( Fig. 23 ) failures. Failure analysis revealed both the compressor rotor and the shaft...
Abstract
This article briefly introduces the concepts of failure analysis, including root-cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It initially provides definitions of failure on several different levels, followed by a discussion on the role of failure analysis and the appreciation of quality assurance and user expectations. Systematic analysis of equipment failures reveals physical root causes that fall into one of four fundamental categories: design, manufacturing/installation, service, and material, which are discussed in the following sections along with examples. The tools available for failure analysis are then covered. Further, the article describes the categories of mode of failure: distortion or undesired deformation, fracture, corrosion, and wear. It provides information on the processes involved in RCA and the charting methods that may be useful in RCA and ends with a description of various factors associated with failure prevention.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001305
EISBN: 978-1-62708-170-2
... water spots, it is good practice to wipe the surfaces completely with dry towels. Some companies use oil impregnated cloths to remove water spots and enhance appearance. Commercial metal cleaners may also be considered, but it is important to make certain that they can be used on stainless steels...
Abstract
Passivation; pickling, that is, acid descaling; electropolishing; and mechanical cleaning are important surface treatments for the successful performance of stainless steel used for piping, pressure vessels, tanks, and machined parts in a wide variety of applications. This article provides an overview of the various types of stainless steels and describes the commonly used cleaning methods, namely, alkaline cleaning, emulsion cleaning, solvent cleaning, vapor degreasing, ultrasonic cleaning, and acid cleaning. Finishing operations of stainless steels, such as grinding, polishing, and buffing, are reviewed. The article also explains the procedures of electrocleaning, electropolishing, electroplating, painting, surface blackening, coloring, terne coatings, and thermal spraying. It includes useful information on the surface modification of stainless steels, namely, ion implantation and laser surface processing. Surface hardening techniques, namely, nitriding, carburizing, boriding, and flame hardening, performed to improve the resistance of stainless steel alloys are also reviewed.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005186
EISBN: 978-1-62708-187-0
... vehicles Farm equipment Engines Refrigeration and heating Construction machinery Valves Soil pipe Pumps and compressors Pressure pipe Other major markets include machine tools, mechanical power transmission equipment, hardware, home appliances, mining machinery, and oil and...
Abstract
Casting is one of the most economical and efficient methods for producing metal parts. In terms of scale, it is well suited for everything from low-volume, prototype production runs to filling global orders for millions of parts. Casting also affords great flexibility in terms of design, readily accommodating a wide range of shapes, dimensional requirements, and configuration complexities. This article traces the history of metal casting from its beginnings to the current state, creating a timeline marked by discoveries, advancements, and influential events. It also lists some of the major markets where castings are used.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003194
EISBN: 978-1-62708-199-3
... which gas (generally air) is introduced to entrain the abrasives and carry them to a handpiece containing a nozzle. Appropriate control switches and accessory equipment, such as a dust collector, exhaust chamber, air compressor, and air filter are required. Typical applications Chemical milling...
Abstract
This article is a comprehensive collection of summary charts that provide data and information that are helpful in considering and selecting applicable processes alternative to the conventional material-removal processes. Process summary charts are provided for electrochemical machining, electrical discharge machining, chemical machining, abrasive jet machining, laser beam machining, electron beam machining, ultrasonic impact grinding, hydrodynamic machining, thermochemical machining, abrasive flow machining, and electrical discharge wire cutting.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001235
EISBN: 978-1-62708-170-2
... intensities were tried, the distortion problem was solved by peening one side of the ring at a higher intensity than that used on the other side, depending on warpage direction. In shot peening the fir-tree serrations of type 410 stainless steel compressor blades used in a jet aircraft engine, as shown in...
Abstract
Shot peening is a method of cold working in which compressive stresses are induced in the exposed surface layers of metallic parts by the impingement of a stream of shot, directed at the metal surface at high velocity under controlled conditions. This article focuses on the major variables, applications, and limitations of shot peening and provides information on peening action, surface coverage, and peening intensity. It discusses the equipment used for shot recycling and shot propelling as well as the types and sizes of media used for peening. The article describes the problems in shot peening of production parts. It concludes with information on the SAE standard J442 that describes the test strips, strip holder, and gage used in measuring shot peening intensity.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005926
EISBN: 978-1-62708-166-5
... reduce the amount of vacuum/vacuum level so as not to vaporize elements from a particular material being heat treated To provide a sweep gas during vacuum processing To provide a means to gas fan cool or gas pressure quench To eliminate or e quench oil vaporization in multichamber oil-quench...
Abstract
This article provides a detailed discussion on the types of furnace atmospheres required for heat treating. These include generated exothermic-based atmospheres, generated endothermic-based atmospheres, generated exothermic-endothermic-based atmospheres, generated dissociated-ammonia-based atmospheres, industrial gas nitrogen-base atmospheres, argon atmospheres, and hydrogen atmospheres. Atmospheres for backfilling, partial pressure operation, and quenching in vacuum are also discussed. Furnace atmospheres constitute four major groups of safety hazards in heat treating: fire, explosion, toxicity, and asphyxiation. The article reviews the fundamentals of principal gases and vapors. It describes how the evaluation of the atmospheric requirements of heat treating furnaces is influenced by factors such as cost of operation and capital investment.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006286
EISBN: 978-1-62708-169-6
... be required. Compressor disks made of Ti-6Al-4V have been machined satisfactorily in this manner, conforming to dimensional requirements ( Ref 17 ). Intermediate anneals during machining sequences can enable higher production (metal-removal rates) because of removal of at least part of the residual...
Abstract
Quenching is a widely used technique to strengthen titanium alloys. This article presents the metallurgical and structural background underlying the specific techniques applied in the quenching of various titanium alloys, and the ways to control and reduce residual stresses induced from quenching or other thermal or mechanical processes. It discusses the types and microstructures of titanium alloys, namely, alpha, alpha-beta, and beta alloys, and describes the general effects of the various heat treatments. The article provides information on quenching media, quenching rate, section size, and martensitic transformation in quenched titanium alloys. It shows how residual stresses in titanium alloys are evaluated and controlled. Finally, the article describes the stress-relief treatments used to reduce residual stresses.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
... characteristic reddish-brown debris of ferric oxide, which, when mixed with oil or grease, produces debris that is often referred to as “blood,” “cocoa,” or “red mud.” Hence, in components that are lubricated so that ordinary corrosion is not likely to occur, the presence of reddish-brown debris is indicative of...
Abstract
Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology. This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting; and the experimental results, map approach, measurement, mechanism, and prevention of fretting wear. This review is followed by several examples of failures related to fretting wear.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004012
EISBN: 978-1-62708-185-6
.... However, for optimum life, the dies should not be allowed to reach too high a temperature. An ideal ambient die temperature is 90 °C (200 °F). Dies can be cooled by spraying, as needed, with a conventional die-cooling oil or a soluble-oil emulsion. Workpieces that have been heated under controlled...
Abstract
Thread rolling is a cold-forming process for producing threads or other helical or annular forms by rolling the impression of hardened steel dies into the surface of a cylindrical or conical blank. Methods that use cylindrical dies are classified as radial infeed, tangential feed, through feed, planetary, and internal. This article focuses on the capabilities, limitations, and machines used for these methods. It describes the three characteristics, such as rollability, flaking, and seaming, used in evaluating and selecting metals for thread rolling. The article explores the factors affecting die life and explains the effect of thread form on processing. It provides information on various fluids used in thread rolling to cool the dies and the work and to improve the finish on the rolled products. The article provides a comparison between thread rolling and cutting, as well as between thread rolling and grinding.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003090
EISBN: 978-1-62708-199-3
... 11.7 30.8 321 Annealed at 830 °C (1525 °F) 731 106 380 55 20.2 40.2 197 Oil quenched from 830 °C (1525 °F) and tempered at 540 °C (1000 °F) 1310 190 1215 176 13.5 47.2 375 4320 Normalized at 895 °C (1640 °F) 793 115 460 67 20.8 51 235 Annealed at 850 °C (1560 °F...
Abstract
The properties of irons and steels are linked to the chemical composition, processing path, and resulting microstructure of the material. For a particular iron and steel composition, most properties depend on microstructure. Processing is a means to develop and control microstructure, for example, hot rolling, quenching, and so forth. This article describes the role of these factors in both theoretical and practical terms, with particular focus on the role of microstructure. It lists the mechanical properties of selected steels in various heat-treated or cold-worked conditions. In steels and cast irons, the microstructural constituents have the names ferrite, pearlite, bainite, martensite, cementite, and austenite. The article presents four examples that have very different microstructures: the structural steel has a ferrite plus pearlite microstructure; the rail steel has a fully pearlitic microstructure; the machine housing has a ferrite plus pearlite matrix with graphite flakes; and the jaw crusher microstructure contains martensite and cementite.