Skip Nav Destination
Close Modal
Search Results for
compressor blades
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 175 Search Results for
compressor blades
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2005
Fig. 3 Wrought gamma titanium products. (a) Compressor blades. (b) Subscale isothermally forged disk. (a) and (b) Source: D.U. Furrer, Ladish Company. (c) Large, conventionally (pack) rolled sheet. Source: Battelle Memorial Institute, Air Force Research Laboratory
More
Image
Published: 01 August 2013
Fig. 13 High-pressure compressor blades coated with physical vapor deposition process for improved wear resistance. Source: Ref 22
More
Image
Published: 30 August 2021
Fig. 15 Solid-particle-erosion-damaged compressor blades (titanium alloy) from flight service. The white dashed lines indicate the approximate original contour of the airfoils. The leading edges are facing left, as shown. Note the greater extent of material loss at the trailing edges, where
More
Image
Published: 01 January 2002
Fig. 29 Compressor blade fracture surface showing fatigue origins on low pressure (i.e., right) side of blade, as indicated by the arrows. 13×
More
Image
in Wrought and P/M Superalloys
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 9 1000-h creep rupture strength of turbine rotor and compressor blade alloys. Source: Ref 14
More
Image
in Wrought and P/M Superalloys
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 10 Yield strength at 0.2% offset of five candidate compressor blade alloys compared with that of 12Cr-0.6Mo steel. Source: Ref 14
More
Image
Published: 30 August 2021
Fig. 9 Campbell diagram for a compressor blade showing various vibrational-mode frequencies of the blade (horizontal lines) and the frequency-versus-speed curve for wakes created by the upstream stationary vanes (black diagonal line). TE, trailing edge
More
Image
Published: 30 August 2021
Fig. 26 (a) Photograph of fractured compressor blade. (b) Scanning electron fractograph showing fracture-initiation region. A band with a pronounced oxide scale was observed at the surface (arrows). (c) Optical micrograph of a cross section of the fracture in the initiation region. Original
More
Image
Published: 01 January 1993
Image
Published: 15 January 2021
Fig. 22 Compressor blade fracture surface showing fatigue origins on low-pressure (i.e., right) side of blade, as indicated by the arrows. Original magnification: 13 ×
More
Image
Published: 01 January 2002
Image
Published: 15 January 2021
Fig. 21 Failed compressor rotor. Arrows indicate fractured portions of blades. Original magnification: 36 ×
More
Image
Published: 01 January 2006
Image
Published: 01 January 1994
Fig. 12 Relation of nozzle angle, angle of load face, and resulting angle of impingement in peening root serrations of compressor blades. Angle of impingement, 83°
More
Image
Published: 01 January 2005
Fig. 10 Highly configured (twisted) alloy Ti-6Al-4V and alloy Ti-8Al-1Mo-1V turbine engine fan and compressor blades that were forged in screw presses
More
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005737
EISBN: 978-1-62708-171-9
... airfoils. Design requirements are reviewed and compared between aerospace and power generation coatings. Application process improvement areas are also discussed as a method of reducing component cost. aerospace engines combustors gas turbines high-power turbine blades high-pressure compressors...
Abstract
This article provides an overview of key thermal spray coatings used in compressors, combustors, and turbine sections of a power-generation gas turbine. It describes the critical components, including combustors, transition ducts, inlet nozzle guide vanes, and first-stage rotating airfoils. Design requirements are reviewed and compared between aerospace and power generation coatings. Application process improvement areas are also discussed as a method of reducing component cost.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004158
EISBN: 978-1-62708-184-9
... environmental attack in the form of high-temperature oxidation and hot corrosion are the most important. Corrosion in the Compressor Section Compressor blades and vanes are usually made from martensitic or precipitation-hardening stainless steels and can either be coated or bare. Compressor disks...
Abstract
The corrosion issues in the compressor, combustor and turbine sections of industrial gas turbines used in steam production generally depend on the quality of the fuel, air, and water used in the engine than on the specific industrial application. This article focuses on the forms of corrosion and their preventive measures in the compressor, combustor and turbine sections of a steam turbine. The compressor section mainly suffers from aqueous corrosion; while in case of the combustor and turbine sections, which are made of nickel-base superalloys, high-temperature environmental attack in the form of high-temperature oxidation and hot corrosion are predominant. The effect of high-temperature oxidation and hot corrosion on the mechanical properties of superalloys is also discussed.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
... of compressor and turbine blades ( Ref 1 ). Creep failure of turbine blades, mostly related to issues with cooling, was found to be the second-most costly damage mode. The failure of rotating components tends to be more costly because their significant kinetic energy results in greater collateral damage...
Abstract
This article focuses on common failures of the components associated with the flow path of industrial gas turbines. Examples of steam turbine blade failures are also discussed, because these components share some similarities with gas turbine blading. Some of the analytical methods used in the laboratory portion of the failure investigation are mentioned in the failure examples. The topics covered are creep, localized overheating, thermal-mechanical fatigue, high-cycle fatigue, fretting wear, erosive wear, high-temperature oxidation, hot corrosion, liquid metal embrittlement, and manufacturing and repair deficiencies.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006428
EISBN: 978-1-62708-192-4
... filters past the struts and inlet guide vane (IGV) into a high-pressure compressor ( Ref 1 ). The compressor broadly consists of alternating stages of compressor blades and vanes which decrease in size as one goes from front to aft stages. The blades are attached to a rotor in the form of blade or bucket...
Abstract
This article illustrates typical wear and friction issues encountered in gas and steam turbines and their consequences as well as commonly adopted materials solutions. It contains tables that present the summary of wear and friction related issues encountered in steam turbines and gas turbines. The article outlines the differences in the operating conditions and the nature of the components involved in gas and steam turbines. It discusses the constraints and applicable coating solutions for wear and friction issues, and concludes with a broad set of challenges that need to be addressed to improve performance and operability of gas and steam turbines.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005738
EISBN: 978-1-62708-171-9
... labyrinth seals are common in high- and low-pressure turbine applications. The third main type of sealing system is unshrouded (or open-tip) blade seals ( Fig. 1c ), in which a blade tip cuts directly into a softer abradable material counterpart that is attached to a compressor or turbine casing...
Abstract
This article provides an overview of key abradable thermal spray coating systems based on predominant function and key design criteria. It describes two families of coatings which have evolved for use at higher temperature: flame (combustion)-sprayed abradable powders and atmospheric plasma-sprayed abradable powders. Three classic examples of flame spray abradables are nickel-graphite powders, NiCrAl-bentonite powders, and NiCrFeAl-boron nitride powders. The article provides information on various abradable coating testing procedures, namely, abradable incursion testing; aging, corrosion, thermal cycle and thermal shock testing; hardness testing; and erosion resistance testing.
1