Skip Nav Destination
Close Modal
Search Results for
compressive properties
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1702 Search Results for
compressive properties
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Properties of Wrought Aluminum and Aluminum Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Image
Published: 01 January 2001
Fig. 6 Comparison between the tensile and compressive properties of the three types of [0] 12 A-4 carbon-fiber-epoxy composites. The modulus values are similar in both the loading modes. The compression test yields much smaller strength than tensile strength. Also, the compressive strength
More
Image
Published: 31 August 2017
Fig. 40 Effect of temperature on the compressive properties of a class 20 gray iron (3.52% C, 1.58% Si, 0.72% P). Source: Ref 50
More
Image
Published: 01 January 2001
Fig. 1 Compression properties of thermosets and thermoplastics. Source: Ref 9 and manufacturer data (PEI, Hexcel Corp.; PEEK, Cytec Fiberite)
More
Image
Published: 31 August 2017
Fig. 18 Influence of compressive stress on elastic properties of gray iron. Courtesy of American Foundry Society. Source: Ref 3 , 28
More
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006734
EISBN: 978-1-62708-210-5
... Abstract Alloy 7055 is widely used in the aerospace industry in applications as plate and extrusions. This datasheet provides information on key alloy metallurgy and processing effects on fracture, mechanical, tensile, and compressive properties of this 7xxx series alloy. aerospace...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003265
EISBN: 978-1-62708-176-4
... Abstract Compression tests are used for subscale testing and characterizing the mechanical behavior of anisotropic materials. This article discusses the characteristics of deformation during axial compression testing, including deformation modes, compressive properties, and compression-test...
Abstract
Compression tests are used for subscale testing and characterizing the mechanical behavior of anisotropic materials. This article discusses the characteristics of deformation during axial compression testing, including deformation modes, compressive properties, and compression-test deformation mechanics. It describes the procedures for the use of compression testing for the measurement of the deformation and fracture properties of materials. The article provides a detailed discussion on the technique involved in determining the stress-strain behavior of metallic materials based on the ASTM E 9, "Compression Testing of Metallic Materials at Room Temperature." It also reviews the factors that influence the generation of test data for tests conducted in accordance with the ASTM E 9 and the capabilities of conventional universal testing machines for compression testing.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006345
EISBN: 978-1-62708-179-5
... properties, shear and torsional properties, damping capacity, compressive properties, fatigue properties, and fracture toughness of ductile iron. The article concludes with information on the applications of austempered ductile iron. austempered ductile iron compressive yield strength damping...
Abstract
Ductile iron, also known as nodular iron or spheroidal graphite iron, is second to gray iron in the amount of casting produced. This article discusses the common grades of ductile iron that differ primarily by the matrix structure that contains the spherical graphite. The grades of ductile iron designated by their tensile properties in the specification ASTM A536 are presented in a table. The article various reviews factors, such as microstructure, composition, and section effect, affecting the mechanical properties of ductile iron. It discusses the hardness properties, tensile properties, shear and torsional properties, damping capacity, compressive properties, fatigue properties, and fracture toughness of ductile iron. The article concludes with information on the applications of austempered ductile iron.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003443
EISBN: 978-1-62708-195-5
... Abstract This article provides the general mechanical testing guidelines for the characterization of lamina and laminate properties. Guidelines are provided for tensile property, compressive property, shear property, flexure property, fracture toughness, and fatigue property test methods...
Abstract
This article provides the general mechanical testing guidelines for the characterization of lamina and laminate properties. Guidelines are provided for tensile property, compressive property, shear property, flexure property, fracture toughness, and fatigue property test methods. The article also tabulates selected standards for lamina and laminate mechanical testing.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006317
EISBN: 978-1-62708-179-5
... microstructures with nodularity. It describes the tensile properties, hardness and compressive properties, and impact properties of CGI. The article concludes with a discussion on the fatigue strength and thermal conductivity of CGI. compacted graphite iron compressive properties fatigue strength...
Abstract
According to the ISO 16112 standard for compacted graphite cast irons (CGIs), the graphite particles in CGIs shall be predominantly in the vermicular form when viewed on a two dimensional plane of polish. This article begins with a schematic illustration of compacted graphite microstructures with nodularity. It describes the tensile properties, hardness and compressive properties, and impact properties of CGI. The article concludes with a discussion on the fatigue strength and thermal conductivity of CGI.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005324
EISBN: 978-1-62708-187-0
... Abstract This article begins with a description of the classes and grades of ductile iron. It discusses the factors affecting the mechanical properties of ductile iron. The article reviews the hardness properties, tensile properties, shear and torsional properties, compressive properties...
Abstract
This article begins with a description of the classes and grades of ductile iron. It discusses the factors affecting the mechanical properties of ductile iron. The article reviews the hardness properties, tensile properties, shear and torsional properties, compressive properties, fatigue properties, fracture toughness, and physical properties of ductile iron and compares them with other cast irons to aid the designer in materials selection. It concludes with information on austempered ductile iron.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0009242
EISBN: 978-1-62708-195-5
... yarns, rovings, woven fabrics, discontinuous staple and spun yarns, fabrics, and pulp. Key representative properties of para-aramid fibers are listed in a table. The article reviews the properties of aramid fibers, including tensile modulus, tensile strength, creep and fatigue, compressive properties...
Abstract
The chemical composition of Kevlar aramid fiber is poly para-phenyleneterephthalamide. Para-aramid fibers belong to a class of materials known as liquid crystalline polymers. This article discusses the manufacture of aramid fibers and the major fiber forms, such as continuous filament yarns, rovings, woven fabrics, discontinuous staple and spun yarns, fabrics, and pulp. Key representative properties of para-aramid fibers are listed in a table. The article reviews the properties of aramid fibers, including tensile modulus, tensile strength, creep and fatigue, compressive properties, toughness, thermal properties, as well as electrical and optical properties. It concludes with a discussion on the environmental behavior of para-aramid fibers.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001004
EISBN: 978-1-62708-161-0
... list the values for tensile properties, hardness, thermal conductivity, fatigue strengths, endurance ratios, and compressive properties of CG, FG, and SG irons. castability chemical composition compacted graphite iron elevated-temperature properties flake graphite mechanical properties...
Abstract
This article discusses the chemical composition, castability, mechanical properties at room temperature and elevated temperature, and physical properties of compacted graphite (CG) cast iron. The change in graphite morphology from the flake graphite (FG) in the base iron to the CG in the final iron is achieved by liquid treatment with different minor elements. CG irons have strength properties close to those of spheroidal graphite (SG) irons, at considerably higher elongations than those of FG iron, and with intermediate thermal conductivities. The main factors affecting the mechanical properties of CG irons both at room temperatures and at elevated temperatures are composition, structure (nodularity and matrix), and section size. The article also discusses the applications of CG irons that stem from their relative intermediate position between FG and SG irons. The tables in the article list the values for tensile properties, hardness, thermal conductivity, fatigue strengths, endurance ratios, and compressive properties of CG, FG, and SG irons.
Image
in Properties of Cast Aluminum Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 3 Effect of temperature on the strength of A206.0-T7. (a) Tensile properties. (b) Shear strength. (c) Compressive properties. (d) Bearing strengths. (e) Unnotched fatigue limits. (f)Notched fatigue limits
More
Image
in 206.0, A206.0, and B206.0[1]: Al-Cu High-Strength Premium Casting Alloys
> Properties and Selection of Aluminum Alloys
Published: 15 June 2019
Fig. 1 Effect of temperature on the strength of A206.0-T7. (a) Tensile properties. (b) Shear strength. (c) Compressive properties. (d) Bearing strengths. (e) Unnotched fatigue limits. (f) Notched fatigue limits
More
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006346
EISBN: 978-1-62708-179-5
...), compacted graphite (CG), and spheroidal graphite (SG) irons in a table. It discusses the effects of composition, structure, and section size on the mechanical properties of compacted graphite irons. The compressive and shear properties, modulus of elasticity, impact properties, fatigue strength...
Abstract
The main factors affecting the mechanical properties of compacted graphite irons both at room temperatures and at elevated temperatures are composition, structure (nodularity and matrix), and section size. This article presents a comparison between some properties of flake graphite (FG), compacted graphite (CG), and spheroidal graphite (SG) irons in a table. It discusses the effects of composition, structure, and section size on the mechanical properties of compacted graphite irons. The compressive and shear properties, modulus of elasticity, impact properties, fatigue strength, and elevated-temperature properties of compacted graphite irons are also reviewed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003108
EISBN: 978-1-62708-199-3
.... The article also talks about the effects of composition, graphite shape, and section size on the mechanical properties of ductile iron. Tables and graphs provide helpful information on the tensile properties, compressive properties, torsional properties, damping capacity, impact properties, fracture toughness...
Abstract
This article provides information on the general characteristics, composition, uses, applications and specifications for standard grades of ductile iron. It describes the manufacturing and metallurgical process control procedures, including testing and inspection, and heat treatment. The article also talks about the effects of composition, graphite shape, and section size on the mechanical properties of ductile iron. Tables and graphs provide helpful information on the tensile properties, compressive properties, torsional properties, damping capacity, impact properties, fracture toughness, fatigue strength, and elevated-temperature properties of ductile iron.
Image
Published: 01 January 2000
Fig. 8 A comparison of the effect of temperature on tensile and compressive properties of some high strength polymers. A, polyphenylene; B, modified polyphenylene; BF, chopped fiber-reinforced polyphenylene; and BP, polyphenylene with plasticizer
More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003267
EISBN: 978-1-62708-176-4
... Abstract This article provides a discussion on the mechanical properties of metals, ceramics, and polymers and fiber-reinforced polymer composites at low temperatures. It reviews the factors to be considered in tensile and compression testing of these materials. The article details...
Abstract
This article provides a discussion on the mechanical properties of metals, ceramics, and polymers and fiber-reinforced polymer composites at low temperatures. It reviews the factors to be considered in tensile and compression testing of these materials. The article details the equipment used for low-temperature tensile and compression tests with illustrations. It concludes with a discussion on the various test methods and their ASTM standard for compression and tension testing.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003444
EISBN: 978-1-62708-195-5
... properties for this failure mode. (See MIL-HDBK-17, Section 7.2.8 for further discussion.) Net tension-compression and shear-out strengths are a strong function of laminate configuration, joint geometry, and hole size, but are only marginally dependent on fastener type, joint configuration...
Abstract
This article explores why structural element and subcomponent testing are conducted. It discusses the different types of failure modes in composites, and provides information on the testing methodology, fixturing, instrumentation, and data reporting. The article reviews various standard elements used to characterize composite materials for the various failure modes. Simple structural-element testing under in-plane unidirectional, multidirectional, and combined loading, as well as out-of-plane loading are discussed. Simple bolted and bonded joints, as well as data correlation are reviewed with analytical predictions. The article also provides a list of the ASTM testing standards applicable at the element level of testing for both polymer-matrix composites and metal-matrix composites. It concludes with a discussion on durability and damage tolerance testing.
1