Skip Nav Destination
Close Modal
Search Results for
compression Kolsky bar
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-11 of 11
Search Results for compression Kolsky bar
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003300
EISBN: 978-1-62708-176-4
... Abstract This article provides a discussion on the generation of an incident wave with the help of the stored-torque torsional Kolsky bar and explosively loaded torsional Kolsky bar. It examines the procedures followed for measuring the waves in these bars. The article compares the compression...
Abstract
This article provides a discussion on the generation of an incident wave with the help of the stored-torque torsional Kolsky bar and explosively loaded torsional Kolsky bar. It examines the procedures followed for measuring the waves in these bars. The article compares the compression Kolsky bar with the torsional Kolsky bar. It includes information on the various application areas of torsional Kolsky bar: limitations on strain rate, low- and high-temperature testing, quasi-static and incremental strain-rate testing, and localization and shear-banding experiments.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003293
EISBN: 978-1-62708-176-4
... strain rate, s −1 Testing technique Compression tests <0.1 Conventional load frames 0.1–100 Special servohydraulic frames 0.1–500 Cam plastometer and drop test 200–10 4 Hopkinson (Kolsky) bar in compression 10 3 –10 5 Taylor impact test Tension tests <0.1...
Abstract
High strain rate testing is important for many engineering structural applications and metalworking operations. This article describes various methods for high strain rate testing. Several methods have been developed, starting with the pioneering work of John Hopkinson and his son, Bertram Hopkinson. Based on these contributions and also on an important paper by R.M. Davies, H. Kolsky invented the split-Hopkinson pressure bar, which allows the deformation of a sample of a ductile material at a high strain rate, while maintaining a uniform uniaxial state of stress within the sample.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003295
EISBN: 978-1-62708-176-4
.... Eliminating time yields the stress-strain curve for the material at the strain rate provided through Eq 7 . Double-Notch Shear Testing and Punch Loading Kolsky or split-Hopkinson bar testing in compression, tension, or torsion is governed by an upper limit (on the strain rate that can be achieved...
Abstract
This article reviews the dynamic factors, experimental methods and setup, and result analysis of different types of high strain rate shear tests. These include high strain rate torsion testing, double-notch shear testing and punch loading, drop-weight compression shear testing, thick-walled cylinder testing, and pressure-shear plate impact testing.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003298
EISBN: 978-1-62708-176-4
... on polymers and polymeric composites subjected to dynamic loading environments requires a detailed knowledge of the separate and synergistic effects of temperature and strain rate on their mechanical response. Split-Hopkinson pressure bar (SHPB), or Kolsky-bar, testing remains the main experimental method...
Abstract
This article addresses the specialized aspects required to accurately quantify the behavior of soft materials, including polymers and polymeric composites, using the split-Hopkinson pressure bar (SHPB). It details some of the specialized SHPB techniques that facilitate testing soft materials. These techniques include the data-reduction techniques and assumptions required to use polymer pressure bars, the importance of sample-size considerations to polymer testing, and temperature-control methodologies to measure the high-strain-rate uniaxial stress response of polymers and other soft materials.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003296
EISBN: 978-1-62708-176-4
... Abstract This article describes the techniques involved in measuring the high-strain-rate stress-strain response of materials using a split-Hopkinson pressure bar (SHPB). It focuses on the generalized techniques applicable to all SHPBs, whether compressive, tensile, or torsion. The article...
Abstract
This article describes the techniques involved in measuring the high-strain-rate stress-strain response of materials using a split-Hopkinson pressure bar (SHPB). It focuses on the generalized techniques applicable to all SHPBs, whether compressive, tensile, or torsion. The article discusses the methods of collecting and analyzing compressive high-rate mechanical property data. A review of the critical experimental variables that must be controlled to yield valid and reproducible high-strain-rate stress-strain data is also included. Comparisons and contrasts to the differences invoked when using a tensile Hopkinson bar in terms of loading technique, sample design, and stress-state stability, are discussed.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003299
EISBN: 978-1-62708-176-4
...-HOPKINSON PRESSURE BAR (SHPB) TESTING, described elsewhere in this Section, was originally developed by Kolsky ( Ref 1 ) and has been traditionally used for determining the plastic properties of metals (which are softer than the pressure bar material) at high strain rates in the range of 10 2 to 10 4 s −1...
Abstract
Split-Hopkinson pressure bar (SHPB) testing is traditionally used for determining the plastic properties of metals (which are softer than the pressure bar material) at high strain rates. However, the use of this method for testing ceramic has various limitations. This article provides a discussion on the operational principle of the traditional SHPB technique and the relevant assumptions in the derivation of the stress-strain relationship. It describes the inherent limitations on the validity of these assumptions in testing ceramics and discusses the necessary modifications in SHPB design and test procedure for evaluating high-strength brittle ceramics. The article includes information on the maximum strain rate that can be obtained in ceramics using an SHPB and the necessity of incident pulse shaping. It also reviews the specimen design considerations, interpretation of experimental results obtained from SHPB testing of ceramics, and effectiveness of the proposed modifications.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003294
EISBN: 978-1-62708-176-4
... Abstract This article reviews high strain rate compression and tension test methods with a focus on the general principles, advantages, and limitations of each test method. The compression test methods are cam plastometer test, drop tower compression test, the Hopkinson bar in compression...
Abstract
This article reviews high strain rate compression and tension test methods with a focus on the general principles, advantages, and limitations of each test method. The compression test methods are cam plastometer test, drop tower compression test, the Hopkinson bar in compression, and rod impact (Taylor) test. The flyer plate impact test, expanding ring test, split-Hopkinson bar in tension, and a test using a rotating wheel used for high strain rate tension are also discussed.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006951
EISBN: 978-1-62708-439-0
...-rate testing approaching impact velocities is generally conducted using the split Hopkinson pressure bar technique (or Kolsky bar) over strain-rate regimes of approximately 10 3 s −1 ( Ref 39 , 41 – 43 ). Blast Lattices have been proposed as alternatives to traditional foams that are used...
Abstract
This article provides an introduction to architected cellular materials, their design, fabrication, and application domain. It discusses design decisions involving the selection, sizing, and spatial distribution of the unit cell, property-scaling relationships, and the integration of cells within an external boundary. It describes how manufacturing constraints influence achievable feature resolution, dimensional accuracy, properties, and defects. It also discusses the mechanical behavior of architected cellular materials and the role of additive manufacturing in their fabrication.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003308
EISBN: 978-1-62708-176-4
... parameters that are useful in design. However, many qualitative methods have also been used in the evaluation of impact energy to break a notched bar, percent of cleavage area on fracture surfaces, or the temperature for nil ductility or crack arrest. These qualitative tests include methods...
Abstract
Measurement and analysis of fracture behavior under high loading rates is carried out by different test methods. This article provides a discussion on the history and types of notch-toughness tests and focuses exclusively on notch-toughness tests with emphasis on the Charpy impact test. It reviews the requirements of test specimens, test machine, testing procedure and machine verification, application, and determination of fracture appearance and lateral expansion according to ASTM A370, E 23, and A 593 specifications. In addition, the article includes information on the instrumentation, standards and requirements, and limitations of instrumented Charpy impact test, which is carried out in specimens with induced fatigue precrack. The article concludes with a review of the requirements of drop weight testing and the specimens used in other notch-toughness tests.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009010
EISBN: 978-1-62708-185-6
... Rate Testing” in Mechanical Testing and Evaluation , Volume 8 of the ASM Handbook , 2000, p 427). For strain rates from 100 to 1000 s −1 , the Hopkinson (Kolsky)-bar method is used. This article and the following discussions only consider isothermal conditions and strain rates below 0.1 s −1 , where...
Abstract
This article discusses two types of hot-tension tests, namely, the Gleeble test and conventional isothermal hot-tension test, as well as their equipment. It summarizes the data for hot ductility, strength, and hot-tension for commercial alloys. The article presents isothermal hot-tension test data, which helps to gain information on a number of material parameters and material coefficients. It details the effect of test conditions on flow behavior. The article briefly describes the detailed interpretation of data from the isothermal hot-tension test using numerical model. It also explains the cavitation mechanism and failure modes that occur during hot-tension testing.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005519
EISBN: 978-1-62708-197-9
... high-speed compression tests can only produce usable results at strain rates up to 450/s ( Ref 23 ). The Kolsky or split Hopkinson bar test measures dynamic stress-strain response via a series of bars that transmit a pressure pulse through the test sample. Strain gages are used to measure incident...
Abstract
This article begins with information on the fundamentals of chip formation process and general considerations for the modeling and simulation of machining processes. It focuses on smaller-scale models that seek to characterize the workpiece/tool/chip interface and behaviors closely associated with that. The article describes the advantages and disadvantages of various finite-element modeling approaches, namely, transient models, continuous cutting model, steady-state model, hybrid model, two-dimensional models, and three-dimensional models. It discusses flow stress measurements using constitutive and inverse testing methods and reviews tool design for chip removal. The article explains the effect of tool geometry on burr formation and the effect of coatings on tool temperatures. It concludes with information on tool wear, which is an unavoidable effect of metal cutting.