Skip Nav Destination
Close Modal
Search Results for
compressed gas cylinders
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 532
Search Results for compressed gas cylinders
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005758
EISBN: 978-1-62708-171-9
..., compressed air, nitrogen, helium, argon, carbon dioxide, hydrogen, acetylene, kerosene, propylene, propane, and natural gas. The article also provides information on the maintenance and safety practices involved in the plumbing configurations of cylinder gas supply units and bulk gas supply units...
Abstract
This article provides members of the thermal spray community with practical recommendations for the safe installation, operation, and maintenance of gas equipment used in the thermal spray process. It focuses on safety issues concerning gas equipment used in conjunction with thermal spray equipment at consumer sites. The article covers the gas sources (bulk or gaseous), the piping (hard and soft) leading to the gas console or the torch, and the specific safety devices used to help ensure safe operation. It discusses the characteristics and safety hazards of gases such as oxygen, compressed air, nitrogen, helium, argon, carbon dioxide, hydrogen, acetylene, kerosene, propylene, propane, and natural gas. The article also provides information on the maintenance and safety practices involved in the plumbing configurations of cylinder gas supply units and bulk gas supply units.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001372
EISBN: 978-1-62708-173-3
..., and are caused to flow together and solidify without the application of pressure to the parts being joined. The most important source of heat for OFW is the oxyacetylene welding (OAW) torch. The simplest and most frequently used OFW system consists of compressed gas cylinders, gas pressure regulators, hoses...
Abstract
Oxyfuel gas welding (OFW) is a manual process in which the metal surfaces to be joined are melted progressively by heat from a gas flame, with or without a filler metal. This article discusses the capabilities, advantages, and limitations of OFW. It describes the role of gases, such as oxygen, acetylene, hydrogen, natural gas, propane, and proprietary gases, in OFW. The article discusses the important elements of an OFW system, such as gas storage facilities, pressure regulators, hoses, torches, related safety devices, and accessories. It describes the sequence for setting up a positive-pressure welding outfit. The article provides information on forehand welding and backhand welding, as well as various joints used. It concludes with a discussion on repairs and alterations, as well as the safety aspects.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001487
EISBN: 978-1-62708-173-3
... bonding arc welding brazing compressed gas handling cutting electric shock electrical safety electron-beam welding explosion welding eye protection face protection friction welding high-frequency welding laser-beam welding oxyfuel gas welding protective clothing resistance welding safety...
Abstract
Safety is an important consideration in all welding, cutting, and related work. This article discusses the basic elements of safety general to all welding, cutting, and related processes. It includes safety procedures common to a variety of applications. The most important component of an effective safety and health program is management support and direction. The article reviews the role of management, training, housekeeping, and public demonstrations in welding safety to minimize personal injury and property damage. It provides information on the safety measures for eye and face protection in various welding and cutting operations. Injuries and fatalities from electric shock in welding and cutting operations can occur if proper precautionary measures are not followed. The article discusses the electrical safety aspects to be considered for various welding and cutting operations.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005635
EISBN: 978-1-62708-174-0
... and explosion. adhesive bonding arc welding brazing compressed gas cutting electrical safety electromagnetic radiation electron beam welding explosion prevention explosion protection explosion welding fire prevention fire protection friction welding fumes gas high-frequency welding laser...
Abstract
This article presents an overview of the rules, regulations, and techniques implemented to minimize the safety hazards associated with welding, cutting, and allied processes. Safety management, protection of the work area, process-specific safety considerations, and robotic and electrical safety are discussed. The article explains the use of personal protective equipment and provides information on protection against fumes, gases, and electromagnetic radiation. It concludes with a discussion on safe handling of compressed gases as well as the prevention and protection of fire and explosion.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005590
EISBN: 978-1-62708-174-0
... on compressed gas cylinders, on associated equipment, and in the CGA publication P-1, “Precautions for Safe Handling of Compressed Gases in Cylinder” ( Ref 9 ). Use only compressed gas cylinders containing the correct shielding gas for the process used and with properly operating regulators designed for the gas...
Abstract
The gas tungsten arc welding (GTAW) process derives the heat for welding from an electric arc established between a tungsten electrode and the part to be welded. This article provides a discussion on the basic operation principles, advantages, disadvantages, limitations, and applications of the process. It describes the equipment used for GTAW, namely, power supplies, torch construction and electrodes, shielding gases, and filler metals as well as the GTAW welding procedures. The article concludes with a review of the safety precautions to avoid possible hazards during the GTAW process: electrical shock, fumes and gases, arc radiation, and fire and explosion.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003208
EISBN: 978-1-62708-199-3
... consists of compressed gas cylinders, gas pressure regulators, hoses, and a welding torch. Oxygen and fuel are stored in separate cylinders. The gas regulator attached to each cylinder, whether fuel gas or oxygen, controls the pressure at which the gas flows to the welding torch. At the torch, the gas...
Abstract
This article discusses the principles of operation, equipment needed, applications, and advantages and disadvantages of various fusion welding processes, namely, oxyfuel gas welding, electron beam welding, stud welding, laser beam welding, percussion welding, high-frequency welding, and thermite welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005618
EISBN: 978-1-62708-174-0
... in three main modes adapted to the consumption rate of the manufacturing operation ( Fig. 12 ): For low consumption rates, compressed gas cylinders that can be brought individually or in sets of 6 to 16 inside a plant are sufficient. A typical bank of 12 cylinders with nearly 3600 standard cubic feet...
Abstract
Laser has found its applications in cutting, drilling, and shock-peening operations of manufacturing industry because of its accurate, safe, and rapid cutting property. This article provides an account on the fundamental principles of laser cutting (thermal), drilling, and shock-peening processes of which emphasis is placed on thermal laser cutting. It details the principal set-up parameters, such as the laser beam output, nozzle design, focusing optic position and characteristics, assist gases, surface conditions, and cutting speed. A discussion on the types of gas, supply system, purity level, and flow rates of lasing and assist gases is also provided. The article also describes the metallurgies and other key material considerations that impact laser-cutting performances and includes examples of laser cutting of nonmetal materials.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001484
EISBN: 978-1-62708-173-3
... distance. All combustibles should be removed from the work area, and a fire extinguisher should be located in the vicinity. Because the pilot arc from a PAC torch is very hot, extra care should be taken to prevent it from contacting clothing and other flammable materials. Compressed Gas Cylinders...
Abstract
Plasma arc cutting (PAC) is an erosion process that utilizes a constricted arc in the form of a high-velocity jet of ionized gas to melt and sever metal in a narrow, localized area. This article discusses the process description, equipment, gases, operating sequence, process considerations, and applications of PAC. It concludes with a discussion on the safety measures associated with the PAC process.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005740
EISBN: 978-1-62708-171-9
... for cylinder bores Table 3 Thermal spray coating methods for cylinder bores Rotaplasma spraying Twin-wire arc spraying Plasma-transferred wire arc spraying Schematic Parameter Current Current Current Plasma gas flow (Ar, H 2 )Powder feed rate Compressed air flow Wire feed...
Abstract
This article describes the benefits that can be achieved by using thermal spray on particular engine parts of an automobile. These include improvement in fuel consumption, wear resistance and bonding, and reduction of oil consumption, exhaust heat loss, and cooling heat loss. Typical engine parts are cylinder blocks, cylinder bores, cast iron cylinder liners, piston rings, connecting rod bearings, turbochargers, engine valve lifters, exhaust system parts, and oxygen sensors. The article also describes the benefits of using thermal spray on transmission parts such as synchronizer rings and torque converters.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006427
EISBN: 978-1-62708-192-4
... by a spark, and compression ignition (CI) engines refer to ignition by compression. Because of the ignition-quality differences between diesel and gasoline fuels, CI engine are usually associated with diesel engines and SI with gasoline engines. However, this distinction is less clear amongst the advanced...
Abstract
This article focuses on friction, lubrication, and wear of internal combustion engine parts, improvements in which provide important gains in energy efficiency, performance, and longevity of the internal combustion (IC) engine systems. It discusses the types, component materials, and Friction and Wear Control of IC engine. The article explains the process of friction reduction by surface textures or coatings. It provides information on surface hardening of iron and steel, which is commonly employed for engine and powertrain components such as crankshafts, cams, and cylinder liners. The article also discusses advanced surface engineering technologies, such as diamondlike carbon coatings and surface texture technology. Information on thermal-spray methods that have led to improvements in engine components is also provided. The article describes IC engine-components wear, namely, piston assembly wear, valvetrain wear, cylinder-bore wear, and engine bearing wear. It concludes with information on inlet valve and seat wear of IC engine.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004150
EISBN: 978-1-62708-184-9
... that is most often the rotation of a shaft. The most common example is the automobile engine, in which gasoline and air are drawn through a valve to a mixing nozzle into a cylinder by a piston; the mixture is then compressed by the piston rising in the cylinder. The compressed mixed gases are then ignited...
Abstract
The primary fossil fuels are generally defined as coal, oil, natural gas, tar sands, and shale oil. This article discusses the characteristics and the types of fuels used in fossil and fuel industries. It describes the energy conversion in fuels and outlines the efficiency of a heat engine with the help of the Carnot equation.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006312
EISBN: 978-1-62708-179-5
... ) and petrol engine cylinder blocks ( Ref 6 , 7 , 8 ) in passenger vehicle applications and for diesel engine cylinder blocks and heads for commercial vehicle and off-road industrial power applications ( Ref 9 , 10 ). It is estimated that global production surpassed 1 million CGI engines per year in 2013...
Abstract
Compacted graphite iron (CGI) invariably includes some nodular (spheroidal) graphite particles, giving rise to the definition of the microstructure in terms of percent nodularity. This article discusses the graphite morphology and mechanical and physical properties of CGI. The mechanical and physical properties of CGI with ferritic and pearlitic matrix structures are summarized in a table. The article describes the standards for CGI, with the definition of the grades based on the minimum tensile strength. It also provides information on the applications of compacted graphite iron castings.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005122
EISBN: 978-1-62708-186-3
... shown in Fig. 2 . The procedure for making such a ring is described in Example 5 in this article. Fig. 2 Titanium alloy gas-turbine ring that was produced by compression forming. Dimensions given in inches Stretch forming is also used to shape automotive body panels, both inner and outer...
Abstract
Stretch forming is the forming of sheet, bars, and rolled or extruded sections over a die or form block of the required shape while the workpiece is held in tension. This article discusses the applicability, advantages, and machines and accessories of stretch forming. It provides a detailed discussion on four methods of stretch forming, namely, stretch draw forming, stretch wrapping, compression forming, and radial draw forming.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005956
EISBN: 978-1-62708-166-5
... donator that today typically is of a gaseous kind. Basically two carbon donators are applied in current industrial applications. Carbon monoxide is the carbon donator during pack cementation, salt bath carburization, and controlled gas carburization. The other ones are hydrocarbons such as propane...
Abstract
The process of case hardening of steel includes three consecutive steps of heat treatment: heating; the thermochemical process with the enrichment of the surface area during the carburizing or carbonitriding stage with carbon and nitrogen; and the subsequent quenching process for hardening. This article provides a model-based description of the development of residual stresses during case hardening. It also describes the influence and effects of residual stresses and distortion in hardening, carburizing, and nitriding processes of the steel.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002416
EISBN: 978-1-62708-193-1
... panel during impact to that of the coupons. Falling-weight tests are used to simulate tool drops, whereas gas-gun tests are used to simulate hail or runway stones and debris. Stones and hail have very small masses relative to tools. Damage size ( Ref 13 ) is plotted against impacter kinetic energy...
Abstract
This article presents the damage tolerance criteria for military composite aircraft structures to safely operate the structures with initial defects or in-service damage. It describes the effects of defects, such as wrinkles in aircraft structures, and the reduction in compressive strength and tensile strength. The article reviews low velocity impacts in aircraft structures in terms of resin toughness, laminate thickness, specimen size and impactor mass, and post-impact fatigue. It explains the tension strength analysis, such as linear elastic fracture mechanics and R-curve methods, to predict the residual strength of the structures.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005870
EISBN: 978-1-62708-167-2
... solid cylinder. After passing the M s temperature at time t = t 1 , compressive transformation stresses develop at the surface as a consequence of the martensite volume increase. Internal stresses in the surface layer must be compensated by tensile stresses within the core and/or the subsurface...
Abstract
Residual stresses are stresses within a part that result from non-uniform plastic deformation or heating and cooling and play a vital role in ensuring long life of the induction-hardened steel parts. This article provides a description of the formation of residual stresses, and factors affecting their magnitude and distribution as well as their effects on longevity of heat-treated components. The residual stresses of the induction-hardened part are often produced by microstructural transformation, thermal shrinking, distortion, and quenching. Fatigue strength is the main property that gets affected not only by induction hardening but also by residual stresses, quenching conditions, and grain size in the hardened condition. The article concludes with a review of induction heating or hardening in conjunction with other processing methods with examples in terms of properties and, in some cases, effects on residual stress.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006429
EISBN: 978-1-62708-192-4
... and to smaller air compressors. In a crosshead-type compressor ( Fig. 12 ), the connecting rod is attached to the crosshead, which is connected to the piston rod that moves the piston, which has normally a double acting cylinder and is usually found in process gas service. It can be noted that a gas seal...
Abstract
Pumps and compressors are representative fluid machineries, which are indispensably important industrial equipment for water supply systems, chemical processing and reactions, and fluid power systems. This article addresses friction, lubrication, and wear of components in several types of machines such as positive displacement pumps including hydraulic pumps, turbo-pumps including centrifugal pumps, vacuum pumps, and compressors including the positive displacement type and turbo type.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003973
EISBN: 978-1-62708-185-6
... movement of the trigger permits high-pressure gas to enter the lower chamber and the space beneath the drive piston. This forces the drive piston, rod, lower ram, and lower die upward. The reaction to this force drives the floating piston, cylinder, upper ram, and upper die downward. The rods provide...
Abstract
Hammers and high-energy-rate forging machines are classified as energy-restricted machines as they deform the workpiece by the kinetic energy of the hammer ram. This article provides information on gravity-drop hammers, power-drop hammers, die forger hammers, counterblow hammers, and computer-controlled hammers. It describes the three basic designs of high-energy-rate forging (HERF) machines: the ram and inner frame, two-ram, and controlled energy flow. The article reviews forging mechanical presses, hydraulic presses, drive presses, screw presses, and multiple-ram presses.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006553
EISBN: 978-1-62708-210-5
.... Typical applications include: Machinery Transmission cases ( Fig. 3 ) Engine blocks Gas meters and regulators Gear blocks Gear cases Fuel pumps Impellers Instrument cases Lawnmower decks Intake manifolds Cylinder heads Clutch housings Oil pans Outboard motor...
Abstract
This article summarizes some general alloy groupings by application or major characteristics. The groupings include cast rotor, general-purpose, elevated-temperature, wear-resistant, moderate-strength, high-strength, and high-integrity die casting alloys and cast aluminum alloys bearings. A table lists selected applications for aluminum casting alloys.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006109
EISBN: 978-1-62708-175-7
... shape, such as gas-atomized (spherical) stainless steel powder, do not demonstrate this characteristic. The effect of decreased particle size on density is particularly significant for particle sizes of less than 20 μm. Table 1 shows the effect of particle size on apparent density for several metal...
Abstract
This article describes the methods for determining the flow rate of metal powders. It examines the factors affecting flow rate, apparent density, and angle of repose of metal powders. The article reviews the frictional properties, cohesive strength, frictional properties, tap density, and compressibility of metal powders. It explains the mechanisms of powder segregation. The article provides information on green strength and springback value of rectangular test bar. It concludes with a discussion on the chemical composition of metal powders.
1