Skip Nav Destination
Close Modal
Search Results for
composite-toughening methods
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 164
Search Results for composite-toughening methods
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009080
EISBN: 978-1-62708-177-1
... electron microscopy. Particle Interlayer Toughening of Composite Materials A more recent method of toughening fiber-reinforced composites modifies only the highly stressed interlayer of the composite ( Ref 10 , 14 , 15 , 16 ). This engineering approach to toughening composites has been shown...
Abstract
This article describes the dispersed-phase toughening of thermoset matrices by the development of multiphase-structure thermosetting matrices using rubber and/or thermoplastic materials. It discusses two main methods for manufacturing prepregs, namely, single-pass impregnation and double-pass impregnation. The article illustrates reflected-light optical microscopy techniques to evaluate the morphology of thermoplastic materials for determining the material quality and correlating key microstructural features with material performance.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009071
EISBN: 978-1-62708-177-1
... transfer molding, vacuum-assisted resin transfer molding, and resin film infusion. It explains the composite- and matrix-toughening methods for fiber-reinforced composites, such as dispersed-phase toughening and interlayer toughening. The article concludes with information on optical microscopy, which...
Abstract
This article illustrates the polymer matrices used for composite materials. It describes the use of prepeg materials in manufacturing high-performance composites. The article discusses the various infusion processes for the development of fiber-reinforced composites, namely, resin transfer molding, vacuum-assisted resin transfer molding, and resin film infusion. It explains the composite- and matrix-toughening methods for fiber-reinforced composites, such as dispersed-phase toughening and interlayer toughening. The article concludes with information on optical microscopy, which provides an insight into the micro- and macrostructure of fiber-reinforced composites.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009081
EISBN: 978-1-62708-177-1
... interlayer-toughened composite failure mechanisms. aircraft industry brittle-matrix composite failures composite design composites c-scan methods dispersed-phase thermoset-matrix composite failures impact parameters impact response impact-damaged composites material characteristics optical...
Abstract
This article describes methods for analyzing impact-damaged composites in the aircraft industry. These include C-scan and x-radiography methods and optical microscopy. The article reviews brittle-matrix composite and tough-matrix composite failures. It explains the different types of composite failure mechanisms such as thermoplastic-matrix composite failure mechanisms, untoughened thermoset-matrix composite failure mechanisms, toughened thermoset-matrix composite failure mechanisms, dispersed-phase and rubber-toughened thermoset-matrix composite failure mechanisms, and particle interlayer-toughened composite failure mechanisms.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003449
EISBN: 978-1-62708-195-5
... the mechanisms of toughening are much the same, glass-matrix composites are not discussed here as a separate type of CMC, but are included in the general discussion of DR-CMCs and CFCCs. Discontinuously Reinforced Ceramic-Matrix Composites Discontinuously reinforced ceramic-matrix composites are a class...
Abstract
This article discusses the mechanisms for enhancing the reliability of three types of ceramic-matrix composites: discontinuously reinforced ceramic-matrix composites, continuous fiber ceramic composites, and carbon-carbon composites. It also presents examples of their mechanical and physical properties. Examples that illustrate the properties of commercially available materials are also provided.
Image
Published: 01 December 2004
Fig. 5 Preformed-particle-modified interlayer regions of various carbon fiber composite materials showing differences in the optical analysis technique and the sample-preparation method. (a) Reflected-light optical analysis of an interlayer region showing particles residing in the interlayer
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009094
EISBN: 978-1-62708-177-1
.... Included in these articles are the methods and reagents that are used to bring out distinct features in composite materials, such as different phases and areas of degradation or damage. Also included are details of how to prepare special composite materials having vast differences in hardness and material...
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002418
EISBN: 978-1-62708-193-1
... networks, and a ductile matrix with a dispersed elastic phase. The first two represent most metal-toughened ceramics and intermetallics. The latter includes most metal-matrix composites and rubber-toughened polymers. An important difference between the first two microstructures and the third concerns...
Abstract
The design of structural components with nominally brittle materials is largely determined by their elastic moduli, density, and tensile strength. This article discusses some of the factors involved in the design and reliability through considerations of toughness and ductility of nominally brittle materials. It describes toughening by various bridging mechanisms, as well as process zone effects and their interaction with the bridging rupture zone. The article explains the phenomena that give rise to exceptional toughness and notch-insensitive mechanical behavior. It provides a schematic illustration of a basic cell model to characterize the inelastic strains that occur in ceramic-matrix composites and their dependence on the interface friction.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003486
EISBN: 978-1-62708-195-5
... on discontinuously reinforced CMCs, including their toughening mechanisms and properties, can be found in the article “Properties and Performance of Ceramic-Matrix and Carbon-Carbon Composites” in this Volume. Cutting Tools Both particulate-reinforced and whisker-reinforced Al 2 O 3 have found use...
Abstract
The applications of discontinuously reinforced ceramic-matrix composites (CMCs) fall into four major categories, namely, cutting tool inserts; wear-resistant parts; aerospace and military applications; and other industrial applications, including engines and energy-related applications. This article provides examples for these four categories, with an emphasis on those applications/materials that have achieved commercial viability. The applications for continuous fiber ceramic composites are also summarized.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003063
EISBN: 978-1-62708-200-6
... Abstract Ceramic-matrix composites (CMCs) are being developed for a number of high-temperature and high-performance applications in industrial, aerospace, and energy conservation sectors. This article focuses on processing, fabrication, testing, and characterization methods of CMCs, namely...
Abstract
Ceramic-matrix composites (CMCs) are being developed for a number of high-temperature and high-performance applications in industrial, aerospace, and energy conservation sectors. This article focuses on processing, fabrication, testing, and characterization methods of CMCs, namely, discontinuously reinforced composites and continuous-fiber-reinforced composites. Processing methods include cold pressing, sintering, hot pressing, reaction bonding, melt infiltration, directed metal oxidation, sol-gel and polymer pyrolysis, self-propagating high-temperature synthesis and joining. A table summarizes the properties of various ceramic reinforcements and industrial applications of these composites.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003469
EISBN: 978-1-62708-195-5
...-matrix composite. Source: Ref 4 Fig. 4 Flat, nearly featureless fracture surface indicative of linear-elastic, very low energy absorbing stress-strain behavior (poor toughening behavior of CMCs); alumina (PRD-166) fiber reinforced glass-matrix composite. Source: Ref 5 Evidence...
Abstract
Interpretation of failures of ceramic-matrix composites, and in particular continuous fiber reinforced ceramic-matrix composites is complicated by the complex structure of the composite material. This article describes the failure characteristics and evidence of failure mechanisms of these composites, with illustrations.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001107
EISBN: 978-1-62708-162-7
... degradation at temperatures between 200 to 300 °C (400 to 570 °F). Composite Ceramics The early success of ZTA and partially-stabilized zirconia systems provided the impetus to include toughened ceramics as a candidate for structural applications. However, due to the limited maximum-temperature use...
Abstract
This article discusses the properties and uses of structural ceramics and the basic processing steps by which they are made. It describes raw material preparation, forming and fabrication, thermal processing, and finishing. It provides information on the composition, microstructure, and properties of aluminum oxides, aluminum titanate, silicon carbide, boron carbide, zirconia, silicon nitride, silicon-aluminum-oxynitride, and several ceramic composites. It also explains how these materials maintain their mechanical strength and dimensional tolerances at high temperatures and how some of their shortcomings are being addressed.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009075
EISBN: 978-1-62708-177-1
... Abstract The analysis of composite materials using optical microscopy is a process that can be made easy and efficient with only a few contrast methods and preparation techniques. This article is intended to provide information that will help an investigator select the appropriate microscopy...
Abstract
The analysis of composite materials using optical microscopy is a process that can be made easy and efficient with only a few contrast methods and preparation techniques. This article is intended to provide information that will help an investigator select the appropriate microscopy technique for the specific analysis objectives with a given composite material. The article opens with a discussion of macrophotography and microscope alignment, and then goes on to describe various illumination techniques that are useful for specific analysis requirements. These techniques include bright-field illumination, dark-field illumination, polarized-light microscopy, interference and contrast microscopy, and fluorescence microscopy. The article also provides a discussion of sample preparation materials such as dyes, etchants, and stains for the analysis of composite materials using optical microscopy.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003489
EISBN: 978-1-62708-195-5
...-filled adhesive if there is concern for possible galvanic corrosion in the joint. In thin composite structures where bending or flexing is a concern, a toughened adhesive may be warranted. In addition to composite bonding and repair applications, two-part epoxy paste adhesives are also used...
Abstract
Adhesive bonding is used to assemble composite components into larger structures. Finished components that are damaged during assembly or service are often repaired with adhesive-bonding techniques. This article summarizes criteria for adhesive selection and illustrates typical secondary adhesively bonded joint configurations. It discusses the highly loaded joint considerations of adhesives. The article describes the epoxy adhesives commonly used for the bonding or repair of composite structures. It discusses the surface preparation of composites and metals, and honeycomb processing, including perimeter trimming, mechanical forming, heat forming, core splicing, contouring, and cleaning. The article presents basic steps involved in the adhesive-bonding process and concludes with a discussion on adhesive applications and tooling.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003367
EISBN: 978-1-62708-195-5
... mechanisms used for epoxy resins, with the expected change in the balance of modulus, T g , and strain to failure. The ability to modify and toughen CE-based resins makes them appropriate for adhesives and toughened composite applications. One prepolymer system available from Vantico, XU71787 0.07l...
Abstract
Cyanate ester resins are a family of high-temperature thermosetting resins that bridge the gap in thermal performance between engineering epoxy and high-temperature polyimides. This article discusses the chemistry, properties and characteristics of the cyanate ester resins. It describes the processing procedures for the cyanate ester resins and provides information on properties for selected applications, such as space applications, radomes, and printed circuit boards.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003362
EISBN: 978-1-62708-195-5
... applications where rapid cure is required and the sulfur odor of the curative doesn't prohibit use. Common applications are industrial road marker adhesives and commercial patch kits ( Ref 24 ). Fig. 13 Epoxy-thiol reaction Alternate Cure Methods One of the newer trends in the composites...
Abstract
This article discusses the three basic elements of an epoxy resin formulation that must be understood when selecting a thermoset system. These include base resins, epoxy resin curatives, and modifiers. The article provides examples of epoxy resin formulations that illustrate how raw materials are combined to tailor a formulation to a specific application. It concludes with a discussion on general guidelines for the safe handling of epoxy resins and their associated products.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009082
EISBN: 978-1-62708-177-1
..., “Toughening Methods for Thermoset-Matrix Composites,” the use of various toughening materials in thermosetting matrices may alter the matrix microstructure and can be influenced by the cure cycle. Another factor that is sometimes disregarded is the fiber influence on the matrix microstructure in composite...
Abstract
Microstructural analysis of the composite matrix is necessary to understand the performance of the part and its long-term durability. This article focuses on the microstructural analysis of engineering thermoplastic-matrix composites and the influence of cooling rate and nucleation on the formation of spherulites in high-temperature thermoplastic-matrix carbon-fiber-reinforced composites. It also describes the microstructural analysis of a bio-based thermosetting-matrix natural fiber composite system.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003039
EISBN: 978-1-62708-200-6
... costs of filament winding for a graphite-epoxy composite compared with other fabrication methods The advantages and disadvantages of filament winding, compared with other compacting and curing processes, are: Advantages: Advantages: The highly repetitive nature of fiber placement (from...
Abstract
Filament winding is a process that allows the precise lay-down of continuous reinforcement in predescribed patterns at a high rate of speed. This article discusses the filament winding process and includes a comparison to other compacting and curing processes. The article describes design factors, and techniques to produce aerodynamic surfaces, improve surface smoothness, and avoid slipping and bridging of filament. The article discusses tooling and the equipment used in the filament winding process, namely, mandrel design, winding machines, tensioners, and ovens.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009079
EISBN: 978-1-62708-177-1
... of these materials play a significant role in the microcracking behavior of the cured composite, along with the formed interphase during cure ( Ref 3 ). Composite matrices are often toughened, which can increase the stress level that is necessary to initiate microcracking. The location of the toughness modifiers...
Abstract
This article describes the microcrack analysis of composite materials using bright-field illumination, polarized light, dyes, dark-field illumination, and epi-fluorescence.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003311
EISBN: 978-1-62708-176-4
... specimen type. linear-elastic fracture mechanics elastic-plastic fracture mechanics fracture mechanics ceramics single edge notch bending testing compact tension testing double cantilever beam testing chevron notch methods double torsion method fracture toughness ceramic matrix composites...
Abstract
This article introduces the concepts of linear-elastic fracture mechanics (LEFM) and elastic-plastic fracture mechanics (EPFM). It reviews the fracture mechanics of ceramics and ceramic matrix composites (CMCs). The article describes some fracture toughness measurement techniques used on ceramics and CMCs: single edge notch bending, compact tension, double cantilever beam testing, chevron notch methods, and double torsion. It presents descriptions organized by their specimen types, and includes the advantages and disadvantages, as well as the experimental control schemes employed for each specimen type.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003319
EISBN: 978-1-62708-176-4
.... The larger stress-intensity factor is a result of the crack-length dependence of the toughening mechanism that is active in toughened ceramics. Strength-Based Test Methods Strength-based methods or “indirect” methods employ smooth test specimens, such as flexural beams or tensile specimens...
Abstract
This article describes the fatigue mechanism and behavior of environmentally induced fatigue and cyclic fatigue. It discusses three basic strength test methods, namely, static, dynamic, and cyclic, along with their analytical relations for determining the fatigue parameters and behavior of ceramics and glasses. The article explains the double torsion and double-cantilever beam fracture mechanics methods, which employ test specimens with relatively large, induced cracks. Crack growth data are typically determined directly by the observation of the crack or by devices that monitor test specimen compliance, such as clip gages and strain gages.
1