Skip Nav Destination
Close Modal
Search Results for
composite structure analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 432 Search Results for
composite structure analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003032
EISBN: 978-1-62708-200-6
... Abstract The design and analysis of aerospace and industrial composite components and assemblies requires a detailed knowledge of materials properties, which, in turn, depend on the manufacturing, machining, and assembly methods used. This article, through several tables and graphs, provides...
Abstract
The design and analysis of aerospace and industrial composite components and assemblies requires a detailed knowledge of materials properties, which, in turn, depend on the manufacturing, machining, and assembly methods used. This article, through several tables and graphs, provides the mechanical properties, physical properties, and service characteristics of representative composite fiber-resin combinations, including thermoplastic matrix composites such as thermoplastic polyester resins, thermoplastic polyamide resins, and thermoplastic polysulfone resins, and thermoset matrix composites such as thermoset polyester resins, thermoset phenolic resins, thermoset epoxy resins, thermoset polyimide resins, and thermoset bismaleimide resins.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005681
EISBN: 978-1-62708-198-6
... restorative materials (PMMA) in 1948. This was the first step in the dental material field toward the composite restorative material as it is known today. The earlier acrylic dental restorative material showed poor color stability, significant polymerization contraction, lack of bonding to tooth structure...
Abstract
This article discusses the composition of major components of dental composite resins. The components include organic resin matrix, filler, coupling agents, and initiator-accelerator systems. The article provides a description of three steps in adhesive systems, namely, etching, priming, and the placement of a resin adhesive layer. It describes the properties of composite resins that are related to the amount and type of filler and resin-matrix compositions. The article also provides a discussion on the compositions, properties, and clinical applications of polyacid-modified composite resins and resin-modified glass-ionomer cements. It discusses the biodegradation and biocompatibility of resin-based restorative materials.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006665
EISBN: 978-1-62708-213-6
... by a discussion on the use of synchrotron radiation as an X-ray source for EXAFS. Data-reduction procedures used to extract EXAFS signals are then described. The article also provides information on the analysis of x-ray absorption near-edge structure spectrum and ends with a discussion on the unique...
Abstract
This article provides a detailed account of extended x-ray absorption fine structure (EXAFS). It begins with a description of the fundamentals of EXAFS, providing information on the physical mechanism, single-scattering approximation, and multiple-scattering effects. This is followed by a discussion on the use of synchrotron radiation as an X-ray source for EXAFS. Data-reduction procedures used to extract EXAFS signals are then described. The article also provides information on the analysis of x-ray absorption near-edge structure spectrum and ends with a discussion on the unique features and applications of EXAFS.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005429
EISBN: 978-1-62708-196-2
... not all the atomic sites ( Ref 64 ). At finite temperatures, all alloys show deviations from perfect ordering; however, the composition of the studied δ-MoNi phase was Mo49.2-Ni, and x-ray analysis could not unambiguously determine the chemistry on at least one of the sites. The electronic structure...
Abstract
Electronic structure methods based on the density functional theory (DFT) are used as a powerful tool for assessing the mechanical thermodynamic and defect properties of metal alloys. This article presents the origins of the electronic structure methods and their strengths and limitations. It describes the basic procedures for calculating essential structural properties in metal alloys. The article reviews the approximations and computational details of the pseudopotential plane wave methods used in metal systems. It provides information on the applications of DFT methods in metal alloy systems. The article discusses the calculations of a variety of structural, thermodynamic, and defect properties, with particular emphasis on structural metal alloys and their derivatives.
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.9781627081955
EISBN: 978-1-62708-195-5
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003249
EISBN: 978-1-62708-199-3
... Abstract This article provides a general introduction of materials characterization and describes the principles and applications of a limited number of techniques that are most commonly used to characterize the composition and structure of metals used in engineering systems. It briefly...
Abstract
This article provides a general introduction of materials characterization and describes the principles and applications of a limited number of techniques that are most commonly used to characterize the composition and structure of metals used in engineering systems. It briefly describes the classification of materials characterization methods including, bulk elemental characterization, bulk structural characterization, microstructural characterization, and surface characterization. Further, the article reviews the selection of materials characterization methods most commonly used with metals.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003251
EISBN: 978-1-62708-199-3
... Abstract X-ray diffraction (XRD) is the most extensively used method for identifying and characterizing various aspects of metals related to the arrangements and spacings of their atoms for bulk structural analysis. XRD techniques are also applicable to ceramics, geologic materials, and most...
Abstract
X-ray diffraction (XRD) is the most extensively used method for identifying and characterizing various aspects of metals related to the arrangements and spacings of their atoms for bulk structural analysis. XRD techniques are also applicable to ceramics, geologic materials, and most inorganic chemical compounds. This article describes the operating principles and types of XRD analyses, along with information about the threshold sensitivity and precision, limitations, sample requirements, and capabilities of related techniques. The necessary instrumentation for XRD analyses include the Debye-Scherrer camera and the X-ray diffractometer. The article also describes the uses of XRD analyses, such as the identification of phases or compounds in metals and ceramics; detection of order and disorder transformation; determination of lattice parameters and changes in lattice parameters due to alloying and temperature effects; measurement of residual stresses; characterization of crystallite size and perfection; characterization of preferred orientations; and determination of single crystal orientations.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003045
EISBN: 978-1-62708-200-6
... Abstract Ultrasonic inspection is a nondestructive technique that is useful in both quality control and research applications for flaw detection in fiber-reinforced composite materials. This article describes ultrasonic nondestructive analysis by outlining its three basic types of scans. It...
Abstract
Ultrasonic inspection is a nondestructive technique that is useful in both quality control and research applications for flaw detection in fiber-reinforced composite materials. This article describes ultrasonic nondestructive analysis by outlining its three basic types of scans. It reviews the important quality control techniques used during the manufacture of composite components by analyzing tooling control, material control, pattern orientation control, and in-process control.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003043
EISBN: 978-1-62708-200-6
... Abstract The structural efficiency of a composite structure is established by its joints and assembly. Adhesive bonding, mechanical fastening, and fusion bonding are three types of joining methods for polymer-matrix composites. This article provides information on surface treatment and the...
Abstract
The structural efficiency of a composite structure is established by its joints and assembly. Adhesive bonding, mechanical fastening, and fusion bonding are three types of joining methods for polymer-matrix composites. This article provides information on surface treatment and the applications of adhesive bonding. It discusses the types of adhesives, namely, epoxy adhesives, epoxy-phenolic adhesives, condensation-reaction PI adhesives, addition-reaction PI adhesives, bismaleimide adhesives, and structural adhesives. The article provides information on fastener selection considerations, including corrosion compatibility, fastener materials and strength, head configurations, importance of clamp-up, interference fit fasteners, lightning strike protection, blind fastening, and sensitivity to hole quality. Types of fusion bonding are presented, namely, thermal welding, friction welding, electromagnetic welding, and polymer-coated material welding.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003023
EISBN: 978-1-62708-200-6
..., chain configuration, conformation of the base polymers, processing of the base polymers with or without additives; and the response to chemical, physical, and mechanical stresses of base polymers as unfilled, shaped articles or as components of composite structures. It also describes thermal analysis...
Abstract
Thermal analysis provides a powerful tool for researchers and engineers in determining both unknown and reproducible behavioral properties of polymer molecules. This article covers the thermal analysis and thermal properties of engineering plastics with respect to chemical composition, chain configuration, conformation of the base polymers, processing of the base polymers with or without additives; and the response to chemical, physical, and mechanical stresses of base polymers as unfilled, shaped articles or as components of composite structures. It also describes thermal analysis techniques, including differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and rheological analysis. This article also summarizes the basic thermal properties used in the application of engineering plastics, such as thermal conductivity, temperature resistance, thermal expansion, specific heat, and the determination of glass transition temperatures. It concludes with a discussion of the thermal and related properties of nine thermostat resin systems divided into three groups by low, medium, and high service temperature capabilities.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003046
EISBN: 978-1-62708-200-6
... ). Several criteria determine how a damaged structure is to be repaired. The extent of the damage and the type of structure, primary or secondary, determine what is to be done. In most secondary structures, either a metal plate can be riveted or bolted to the composite or a two-part epoxy can be used with...
Abstract
Relatively limited effort has gone into developing repair processes and materials for composites, in contrast to the significant labor and expense that has gone into the development of these materials for numerous critical applications. As composites gain wider acceptance as aerospace materials, there is a need to understand the requirements of the end users regarding repair of these advanced materials. This article focuses on the repair of graphite-epoxy structures designed in a variety of forms for a wide range of load intensities. Five repair concepts developed for generic laminate repair have been validated in this article through the required environmental and load condition tests. These include bonded-scarf joint flush repair, double-scarf joint flush repair, blind-side banded-scarf repair, blind-side sandwich repair, and bonded external patch repair. A brief note on thermoplastic repair concepts is also provided in this article.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003252
EISBN: 978-1-62708-199-3
... Abstract Microstructural analysis is the combined characterization of the morphology, elemental composition, and crystallography of microstructural features through the use of a microscope. This article reviews three types of the most commonly used electron microscopies in metallurgical studies...
Abstract
Microstructural analysis is the combined characterization of the morphology, elemental composition, and crystallography of microstructural features through the use of a microscope. This article reviews three types of the most commonly used electron microscopies in metallurgical studies, namely scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy. It briefly describes the operating principles, instrumentation which includes energy dispersive X-ray detectors, spatial resolution, typical use of the techniques, elemental analysis detection threshold and precision, limitations, sample requirements, and the capabilities of related techniques.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003250
EISBN: 978-1-62708-199-3
... Abstract The overall chemical composition of metals and alloys is most commonly determined by X-ray fluorescence (XRF) and optical emission spectroscopy (OES), and combustion and inert gas fusion analysis. This article provides information on the capabilities, uses, detection threshold and...
Abstract
The overall chemical composition of metals and alloys is most commonly determined by X-ray fluorescence (XRF) and optical emission spectroscopy (OES), and combustion and inert gas fusion analysis. This article provides information on the capabilities, uses, detection threshold and precision methods, and sample requirements. The amount of material that needs to be sampled, operating principles, and limitations of the stated methods are also discussed.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003827
EISBN: 978-1-62708-183-2
... that contains halide, sulfate, or nitrate ions. The article provides information on the behavior of beryllium under the combined effects of high-purity water environment, stress and chemical environment, and high-temperature environment. The compositions of the structural grades for intentionally...
Abstract
This article describes the four major conditions that can cause beryllium to corrode in air. These include beryllium carbide particles exposed at the surface; surface contaminated with halide, sulfate, or nitrate ions; surface contaminated with other electrolyte fluids; and atmosphere that contains halide, sulfate, or nitrate ions. The article provides information on the behavior of beryllium under the combined effects of high-purity water environment, stress and chemical environment, and high-temperature environment. The compositions of the structural grades for intentionally controlled elements and major impurities are tabulated. The article discusses in-process problems and procedures with beryllium and aluminum-beryllium composites to prevent corrosion during processing, handling, and storage. It also describes the types of coatings used on beryllium and aluminum-beryllium. These include chemical conversion coatings, anodized coatings, plated coatings, organic coatings, and plasma-sprayed coatings.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006631
EISBN: 978-1-62708-213-6
... upon which the ultimate success of structural description largely depends. However, today it takes even less time, and what is now often called “structural analysis” begins after this stage. In order to obtain an appropriate initial model, it is desirable to indicate the correct chemical composition of...
Abstract
This article provides a detailed account of the concepts of single-crystal x-ray diffraction (XRD). It begins with a historical review of XRD methods, followed by a description of the various factors involved in crystal symmetry. The article then focuses on the phase problem in x-ray structural analysis and validation of the structural model. Some of the factors to be considered for performing experimental procedure are provided. The article presents several examples of applications of single-crystal XRD. The following sections cover the crystallographic problem in terms of structural analysis, software programs for crystal structure solution and refinement, and visualization of crystal structures. The article ends with a discussion on various databases available for single-crystal XRD analysis.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003063
EISBN: 978-1-62708-200-6
... deposit are parallel to the fiber axis. Textron has developed a series of surface-modified SiC fibers, called SCS fibers, that have a complex through-the-thickness gradient structure. SCS-6, for example, is a composite fiber that consists of a pyrolytic carbon-coated graphite core, an SiC sheath, and a...
Abstract
Ceramic-matrix composites (CMCs) are being developed for a number of high-temperature and high-performance applications in industrial, aerospace, and energy conservation sectors. This article focuses on processing, fabrication, testing, and characterization methods of CMCs, namely, discontinuously reinforced composites and continuous-fiber-reinforced composites. Processing methods include cold pressing, sintering, hot pressing, reaction bonding, melt infiltration, directed metal oxidation, sol-gel and polymer pyrolysis, self-propagating high-temperature synthesis and joining. A table summarizes the properties of various ceramic reinforcements and industrial applications of these composites.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003044
EISBN: 978-1-62708-200-6
...-reinforced composites. Other considerations include the influence of matrix cracking, or “first ply failure,” on design. In particular, first ply failure may occur far below ultimate failure in a multidirectional laminate. The effect of first ply failure on the usefulness of the laminate in the structure...
Abstract
Tensile testing of fiber-reinforced composite materials is performed to determine uniaxial tensile strength, Young’s modulus, and Poisson’s ratio relative to principal material directions, and helps in the prediction of the properties of laminates. Beginning with an overview of the fundamentals of tensile testing of fiber-reinforced composites, this article describes environmental exposures that can occur during specimen preparation and testing. These include exposures during specimen preparation, and planned exposure such as moisture, damage (impact), and thermal cycling. The article also discusses the test methods of the four major types of mechanical testing of polymer-matrix composites: tensile, compression, flexural, and shear.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001301
EISBN: 978-1-62708-170-2
... well as for the study of property/composition relationships. The full potential of surface analysis is further enhanced if the methods are applied in combination with other characterization methods including phase and structural identification (x-ray diffraction, transmission electron microscopy, and...
Abstract
Coatings and thin films can be studied with surface analysis methods because their inherently small depth allows characterization of the surface composition, interface composition, and in-depth distribution of composition. This article describes principles and examples of common surface analysis methods, namely, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, secondary ion mass spectroscopy, and Rutherford backscattering spectroscopy. It also provides useful information on the applications of surface analysis.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006071
EISBN: 978-1-62708-172-6
... approximately two-thirds of the production. On September 17, 1935, U.S. Patent 2,014,953 was issued to Paul F. Schlingman and Roy H. Kienle for a resin made from “a phenol, aromatic amine and aldehyde, the resulting compositions having good flow, being easily moldable at relatively low molding pressures...
Abstract
An alkyd is an ester-based polymer derived from the polycondensation reaction of polyhydric alcohol and polybasic acid. This article provides useful information on the chemistry, production, coating formulations, modification, commercial products, and application methods of alkyd resins. It also provides a section on drying oil, which is used in the manufacture of resins. The article describes the three categories of metals that have been used in drier compounds: primary driers (active or oxidation driers), secondary driers (through-driers), and auxiliary driers. It also provides information on the oil length of an alkyd resin and on solvents, which play a critical role in the formulation and use of the coating. The article concludes with a description of the concerns that a user, specifier, or applicator should be aware of when using alkyd coatings.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006651
EISBN: 978-1-62708-213-6
... time-of-flight mass spectrometer. Inductively coupled plasma and thermal ionization MS provide atomic information, and direct analysis in real-time and matrix-assisted laser-desorption ionization MS are used to analyze molecular compositions. The article describes various factors pertinent to...
Abstract
This article endeavors to familiarize the reader with a selection of different ionization designs and instrument components to provide knowledge for sorting the various analytical strategies in the field of solid analysis by mass spectrometry (MS). It begins with a description of the general principles of MS. This is followed by sections providing a basic understanding of instrumentation and discussing the operating requirements as well as practical considerations related to solid sample analysis by MS. Instrumentation discussed include the triple quadrupole mass spectrometer and the time-of-flight mass spectrometer. Inductively coupled plasma and thermal ionization MS provide atomic information, and direct analysis in real-time and matrix-assisted laser-desorption ionization MS are used to analyze molecular compositions. The article describes various factors pertinent to ionization methods, namely glow discharge mass spectrometry and secondary ion mass spectrometry. It concludes with a section on various examples of applications and interpretation of MS for various materials.