Skip Nav Destination
Close Modal
By
Patricia L. Stumpff
By
William F. Cole, II, Mark S. Forte, Rikard B. Heslehurst
By
Dale Wilson, Leif A. Carlsson
Search Results for
composite material testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2237
Search Results for composite material testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003438
EISBN: 978-1-62708-195-5
... of common advanced composite materials. advanced composite materials composite material testing certification building-block approach data normalization ENGINEERS commonly want to predict the future performance of a material (or structure) using a property determined by measuring the test...
Abstract
This article provides a summary of the concepts discussed in the articles under the Section “Introduction to Testing and Certification” in ASM Handbook, Volume 21: Composites. The Section covers the basics of what to test, how to test, and how many to test to obtain specific properties of common advanced composite materials.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003380
EISBN: 978-1-62708-195-5
...-8368(97)00013-9 2. O'Brien T.K. and Martin R.H. , Round Robin Testing for Mode I Interlaminar Fracture Toughness of Composite Materials , J. Compos. Technol. Res. , Vol 15 ( No. 4 ), 1993 , p 269 – 281 3. “Standard Test Method for Mode I Interlaminar Fracture Toughness...
Abstract
Delamination is one of the most commonly observed failure modes in composite materials. This article describes the three fundamental fracture failure modes of composite delamination, namely, opening, in-plane shearing, and tearing or scissoring shearing modes. It discusses the characterization and analysis of delamination. The article also reviews the prediction of delamination factors, such as flexbeam fatigue life, and skin/stiffener pull-off strength and life.
Book Chapter
Visual Analysis, Nondestructive Testing, and Destructive Testing
Available to PurchaseBook: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003463
EISBN: 978-1-62708-195-5
.... Acoustic Emission (AE) Acoustic emission (AE) is a phenomenon familiar to metallurgists; mechanical twinning in tin and tin alloys is known as “tin cry.” Composite materials are equally noisy under load, particularly during quasi-static tension testing; therefore, AE has received significant attention...
Abstract
Mechanical and environmental loadings cause a variety of failure modes in composites, including matrix cracking, fiber-matrix debonding, delamination between plies, and fiber breakage. This article summarizes visual analysis and nondestructive testing methods for the failure analysis of composites. These methods include radiography, ultrasonic techniques, acoustic emission, and thermograph. The article also provides information on destructive test techniques.
Book Chapter
Fatigue of Composite Laminates
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002415
EISBN: 978-1-62708-193-1
..., the helicopter experiences a severe high-cycle fatigue environment, typically on the order of 10 7 to 10 8 cycles. The blades show excellent performance with unlimited fatigue life when the composite materials are properly used in rotor blade design ( Ref 20 , 21 , 22 ). The results of tests performed...
Abstract
Knowledge of fatigue behavior at the laminate level is essential for understanding the fatigue life of a laminated composite structure. This article describes fatigue failure of composite laminates in terms of layer cracking, delamination, and fiber break and interface debonding. It discusses the fatigue behavior of composite laminates in the form of a relation between applied maximum fatigue stress and fatigue life. The article explains Weibull distribution and parameters estimation for fatigue data analysis and life prediction of composite laminates. It analyzes the fatigue properties and damage tolerance of fiber-metal laminates such as ARALL and GLARE laminates. The article concludes with a discussion on the effects of fatigue on notched and unnotched specimens.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003440
EISBN: 978-1-62708-195-5
... B-basis values with one-sigma limits. SD, standard deviation. Source: MIL-HDBK-17 Table 2 is an example of a typical test matrix. Typical composite material test matrix Table 2 Typical composite material test matrix Mechanical property Suggested test procedure (a) Test...
Abstract
A test plan specifies material properties to be evaluated, selects test methods, eliminates options offered by standard test methods by selecting specific specimen and test configurations, and defines success criteria. This article discusses various testing objectives that affect the execution of testing programs. The testing objectives include development of test matrices, testing standards, specimen preparation, environmental conditioning, instrumentation and data acquisition, failure modes, and data interpretation and recording.
Book Chapter
Mechanical Testing of Composites
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003044
EISBN: 978-1-62708-200-6
... Abstract Testing of fiber-reinforced composite materials is performed to determine uniaxial tensile strength, Young's modulus, and Poisson's ratio relative to principal material directions, that helps in the prediction of the properties of laminates. Beginning with an overview...
Abstract
Testing of fiber-reinforced composite materials is performed to determine uniaxial tensile strength, Young's modulus, and Poisson's ratio relative to principal material directions, that helps in the prediction of the properties of laminates. Beginning with an overview of the fundamentals of tensile testing of fiber-reinforced composites, this article describes environmental exposures that often occur during specimen preparation and testing. These include exposures during specimen preparation, and planned exposure such as moisture, damage (impact), and thermal cycling techniques. The article also discusses the test procedures, recommended configurations, test specimen considerations, and safety requirements considered in the four major types of mechanical testing of polymer-matrix composites: tensile test, compression test, flexural test, and shear test.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003444
EISBN: 978-1-62708-195-5
... standard elements used to characterize composite materials for the various failure modes. Simple structural-element testing under in-plane unidirectional, multidirectional, and combined loading, as well as out-of-plane loading are discussed. Simple bolted and bonded joints, as well as data correlation...
Abstract
This article explores why structural element and subcomponent testing are conducted. It discusses the different types of failure modes in composites, and provides information on the testing methodology, fixturing, instrumentation, and data reporting. The article reviews various standard elements used to characterize composite materials for the various failure modes. Simple structural-element testing under in-plane unidirectional, multidirectional, and combined loading, as well as out-of-plane loading are discussed. Simple bolted and bonded joints, as well as data correlation are reviewed with analytical predictions. The article also provides a list of the ASTM testing standards applicable at the element level of testing for both polymer-matrix composites and metal-matrix composites. It concludes with a discussion on durability and damage tolerance testing.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003466
EISBN: 978-1-62708-195-5
... fractographic data from the other brittle thermoset resin systems are presented. Differences in Fracture Characteristics Due to Different Loading Conditions In general, brittle matrix composite materials tested under interlaminar, mode I tension loads fail in the plane of the reinforcement. Visually...
Abstract
This article illustrates typical fractographic features for a number of different composite materials. It describes the differences in fracture characteristics due to different loading, material processing, and environmental conditions. The article presents fractographic data obtained from epoxy matrix materials. Minimal fractographic data from other brittle thermoset resin systems are also presented. The article discusses the interlaminar fracture of composites with ductile thermoplastic matrices. It also provides information on the translaminar fracture features of the composite materials.
Book Chapter
Forms and Properties of Composite Materials
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003032
EISBN: 978-1-62708-200-6
... design, test fixture, and load ratio Test specimen condition, dry or wet Axes Definitions, Symbols, and Special Property Calculations Because composite materials can have different properties in each of the three directions, definitions of test axes are very important. Each test axis...
Abstract
The design and analysis of aerospace and industrial composite components and assemblies requires a detailed knowledge of materials properties, which, in turn, depend on the manufacturing, machining, and assembly methods used. This article, through several tables and graphs, provides the mechanical properties, physical properties, and service characteristics of representative composite fiber-resin combinations, including thermoplastic matrix composites such as thermoplastic polyester resins, thermoplastic polyamide resins, and thermoplastic polysulfone resins, and thermoset matrix composites such as thermoset polyester resins, thermoset phenolic resins, thermoset epoxy resins, thermoset polyimide resins, and thermoset bismaleimide resins.
Book Chapter
Properties and Performance of Polymer-Matrix Composites
Available to PurchaseBook: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003447
EISBN: 978-1-62708-195-5
... conditions of concern for resin-matrix composites. Axes definitions, symbols, and special property calculations for composite material property tests are reviewed. The article provides an overview of the performance capabilities of selected polymer-matrix composite materials such as thermoplastic-matrix...
Abstract
This article discusses the materials and properties of polymer-matrix composites to characterize each generic material according to its composition and method of manufacture. It contains a table that lists the key physical, mechanical, thermal, and electrical properties, and in-service conditions of concern for resin-matrix composites. Axes definitions, symbols, and special property calculations for composite material property tests are reviewed. The article provides an overview of the performance capabilities of selected polymer-matrix composite materials such as thermoplastic-matrix composites and thermoset-matrix composites. The thermoplastic-matrix composites include thermoplastic polyester resins and fiber resin composites; thermoplastic polyamide resins and fiber-resin composites; and thermoplastic polysulfone resins and fiber-resin composites.
Book Chapter
Maintainability Issues
Available to PurchaseBook: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003456
EISBN: 978-1-62708-195-5
...-expired materials can also be checked against that standard. Tests that can be used on prepreg composites and adhesives (or any resin material) include: composite prepreg tack test, adhesive flow tests ( Ref 3 ), and other test methods provided in ASTM standards and Suppliers of Advanced Composite...
Abstract
Maintainability is a function of the durability, damage tolerance, and repairability of a structure. This article discusses the configurations of composite structures, such as sandwich, stiffened-skin, and monolithic structures, used in commercial aircraft composites. It describes the considerations for maintainability of the composite structures during the conceptual design phase. Sources of the defects and damage, such as manufacturing defects and in-service defects, are reviewed. The article describes the nondestructive inspection methods that are used in the repair of composite structures to locate damage, characterize the extent of damage, and ensure post-repair quality. It lists suggestions that can be used as design guidelines for adhesive bonding, general composite structure, sandwich structure, material selection, and lightning-strike protection. The article also provides the basic considerations for personnel, facilities, and equipment during maintenance.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003443
EISBN: 978-1-62708-195-5
... or more plies bonded together) test data. This article provides very general mechanical testing guidelines for the characterization of lamina and laminate properties. Because of the variety of composite materials currently in use, the test methods discussed in the article may not be appropriate...
Abstract
This article provides the general mechanical testing guidelines for the characterization of lamina and laminate properties. Guidelines are provided for tensile property, compressive property, shear property, flexure property, fracture toughness, and fatigue property test methods. The article also tabulates selected standards for lamina and laminate mechanical testing.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003382
EISBN: 978-1-62708-195-5
... for Testing and Materials , 1981 , p 297 – 311 18. Schaff J.R. and Davidson B.D. , A Life Prediction Methodology for Composite Structures, Part I: Constant Amplitude and Two Stress Level Fatigue Loading, and Part II: Spectrum Fatigue Loading , J. Compos. Mater. , Vol 31 ( No. 2...
Abstract
In the design of composite structures for durability and damage tolerance, the primary concerns are out-of-plane failures, such as delamination, material degradation associated with environment, stability under compression loading, large degree of scatter in fatigue life, and bearing failure of joints. This article presents an introductory discussion on the fatigue damage process, methodologies assessing fatigue behavior, and life prediction models. It describes the damage mechanisms introduced for a quasi-isotropic laminate under tension-compression fatigue loading. Delamination is a critical issue in fatigue and generally results from high interlaminar normal and shear stresses. The article schematically illustrates the structural elements in which high interlaminar stresses are common. It concludes with a discussion on the classification of fatigue models such as mechanistic or phenomenological, for composite materials under cyclic loading.
Book Chapter
Ceramic-Matrix Composites
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003063
EISBN: 978-1-62708-200-6
... Abstract Ceramic-matrix composites (CMCs) are being developed for a number of high-temperature and high-performance applications in industrial, aerospace, and energy conservation sectors. This article focuses on processing, fabrication, testing, and characterization methods of CMCs, namely...
Abstract
Ceramic-matrix composites (CMCs) are being developed for a number of high-temperature and high-performance applications in industrial, aerospace, and energy conservation sectors. This article focuses on processing, fabrication, testing, and characterization methods of CMCs, namely, discontinuously reinforced composites and continuous-fiber-reinforced composites. Processing methods include cold pressing, sintering, hot pressing, reaction bonding, melt infiltration, directed metal oxidation, sol-gel and polymer pyrolysis, self-propagating high-temperature synthesis and joining. A table summarizes the properties of various ceramic reinforcements and industrial applications of these composites.
Book Chapter
Mechanical Testing of Fiber-Reinforced Composites
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003330
EISBN: 978-1-62708-176-4
... fracture modes, namely, crack opening mode, shearing mode, and tearing mode. It presents an overview of fatigue testing and fatigue damage mechanisms of composite materials and reviews the types of mechanical measurements that can be made during the course of testing to assess fatigue damage. The article...
Abstract
This article begins with a review of the purposes of mechanical characterization tests and the general considerations related to the mechanical properties of anisotropic systems, specimen fabrication, equipment and fixturing, environmental conditioning, and analysis of test results. It provides information on the specimen preparation, instrumentation, and procedures for various mechanical test methods of fiber-reinforced composites. These include the compression test, flexure test, shear test, open hole tension test, and compression after impact test. The article describes three distinct fracture modes, namely, crack opening mode, shearing mode, and tearing mode. It presents an overview of fatigue testing and fatigue damage mechanisms of composite materials and reviews the types of mechanical measurements that can be made during the course of testing to assess fatigue damage. The article concludes with a discussion on the split-Hopkinson pressure bar test.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003439
EISBN: 978-1-62708-195-5
... Abstract Composites are complex engineered materials that often behave differently than common isotropic materials. Before testing a composite material, or before ordering or supervising such testing, the responsible party should review certain considerations. This article provides an overview...
Abstract
Composites are complex engineered materials that often behave differently than common isotropic materials. Before testing a composite material, or before ordering or supervising such testing, the responsible party should review certain considerations. This article provides an overview of such considerations, namely, the differences between the testing of composites and testing of isotropic materials, role of certification agencies and importance of their involvement, building-block approach to composites testing, determining the purpose of testing, normalizing results, and statistical data reduction.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003393
EISBN: 978-1-62708-195-5
... used in the statistical development of allowable values. design allowables lamina laminate allowables composites DESIGN ALLOWABLES are statistically determined materials property values derived from test data. They are limits of stress, strain, or stiffness that are allowed for a specific...
Abstract
This article discusses the need for design allowables, development of design allowables, and important factors that affect the selection of the allowable. It provides a comparison between lamina and laminate allowables. The article discusses laminate results and specific techniques used in the statistical development of allowable values.
Book Chapter
Braiding
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003040
EISBN: 978-1-62708-200-6
.... , Vol 19 , 1985 , p 477 10.1177/002199838501900506 15. Macander A.B. , Crane R.M. , and Camponeschi E.T. , Fabrication and Mechanical Properties of Multidimensionally (X-D) Braided Composite Materials , Composite Materials: Testing and Design (7th Conference) , STP 893...
Abstract
Braiding is a textile process that is known for its simplicity and versatility. Braided structures are unique in their high level of conformability, torsional stability, and damage resistance. This article describes the braiding process and the mechanical properties of two-dimensional and three-dimensional braiding.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003441
EISBN: 978-1-62708-195-5
... and cured thermoset-matrix resins and prepregs. constituent materials chemical test physical test mechanical test reinforcement fibers reinforcement fabrics thermoset resin matrices thermoplastic resin matrices prepregs A COMPOSITE is composed of some form of reinforcement combined...
Abstract
This article describes the most significant tests to characterize the properties of constituent materials. It discusses the chemical, physical, and mechanical tests for determining the properties of reinforcement fibers and fabrics. The article provides information on some of the basic materials used for thermoset and thermoplastic resin matrices. It reviews the identification of the individual characteristics of thermoset and thermoplastic resin along with the test methods normally used for their determination. The article contains a table that lists properties and tests for uncured and cured thermoset-matrix resins and prepregs.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003462
EISBN: 978-1-62708-195-5
... testing and stress analysis is also presented. composite materials composite processing failure analysis fractography materials verification mechanical testing nondestructive evaluation stress analysis surface analysis visual analysis FAILURE ANALYSIS procedures for composites...
Abstract
This article describes the failure analysis procedures for composites and the techniques to be used in these analyses. These procedures include a review of the available in-service records, materials and processing methods, print requirements, and manufacturing records; visual analysis and nondestructive part evaluation; and verification of materials and processing methods. The article discusses the determination of fiber, matrix, and void volume fractions and verification of ply lay-up and orientation. A review of composites processing parameters; fractography and surface analysis; and mechanical testing and stress analysis is also presented.
1