Skip Nav Destination
Close Modal
Search Results for
composite densification
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 198 Search Results for
composite densification
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006117
EISBN: 978-1-62708-175-7
... on several factors, but for the same material composition, temperatures at the lower end of that range are typically applicable for finer powders whereas temperatures at the higher end are typically applicable to coarser powders. This is because the driving force for densification is higher and the diffusion...
Abstract
Sintering is a thermal treatment process in which a powder or a porous material, already formed into the required shape, is converted into a useful article with the requisite microstructure. Sintering can be classified as solid-state, viscous, liquid-phase, and pressure-assisted (or pressure) sintering. This article provides information on the mechanisms and theoretical analysis of sintering and focuses on the types, mechanisms, process and microstructural variables, computer simulation, stages, and fundamentals of densification and grain growth of solid-state sintering and liquid-phase sintering. It describes the models for viscous sintering and the methods used in pressure-assisted sintering, namely, uniaxial hot pressing, hot isostatic pressing, sinter forging, and spark plasma sintering.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003054
EISBN: 978-1-62708-200-6
... in furnace design, the higher energy costs, and the possible grain boundary separation from the pores. In the same manner, compositional changes can improve sintered properties. By adjusting the composition it is possible to considerably strengthen the material and aid sintering densification. Thus, another...
Abstract
Sintering provides the interparticle bonding that generates the attractive forces needed to hold together the otherwise loose ceramic powder mass. It also improves hardness, strength, transparency, toughness, electrical conductivity, thermal expansion, magnetic saturation, corrosion resistance, and other properties. This article discusses the fundamentals of sintering and its effects on pore structures and particle density. It addresses some of the more common sintering methods, including solid-state, liquid-phase, and gas pressure sintering, and presents alternative processes such as reaction sintering and self-propagating, high-temperature synthesis. It also describes several pressure densification methods, including hot isostatic pressing, gas pressure sintering, molten particle deposition, and sol-gel processing. The article concludes with a section on grain growth that discusses the underlying mechanisms and kinetics and the relationship between grain growth and densification.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002465
EISBN: 978-1-62708-194-8
... Table 6 Metal-matrix composite processing Manufacturing process Matrix material Reinforcement material Densification method Final shape operations Powder metallurgy P/M process Aluminum, titanium, or stainless steel powder Silicon carbide powder Temperature, pressure, and time...
Abstract
This article describes the interaction of composition, manufacturing process, and composite properties of composites. The manufacturing process includes resin-matrix, metal-matrix, and carbon/carbon matrix processing. The article discusses various mechanical properties of composites. It explores how variations in the composition, manufacturing, shop process instructions, and loading/environmental conditions can affect the use of a composite product in a performance/service life operation.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003064
EISBN: 978-1-62708-200-6
... of CCCs, in terms of money and mass, are in the military, space, and aircraft industries. aerospace applications carbon fibers carbon-carbon composite properties carbon-carbon composites composite densification composite joining composite protective coatings preform fabrication CARBON...
Abstract
Carbon-carbon composites (CCCs) are introduced in fields that require their high specific strength and stiffness, in combination with their thermoshock resistance, chemical resistance, and fracture toughness, especially at high temperatures. The use of CCCs has expanded as the price of carbon fibers has dropped and their mechanical properties have increased. This article begins with an overview of the carbon conversion processes, fiber properties and microstructures, and interfacial bonding and environmental interaction of carbon fibers, followed by a detailed discussion on the various techniques available for processing CCCs for specific applications, including preform fabrication (fiber weaving), densification, application of protective coatings, and joining. The article closes with a description of the mechanical and physical properties and applications of CCCs. The main applications of CCCs, in terms of money and mass, are in the military, space, and aircraft industries.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003372
EISBN: 978-1-62708-195-5
... Abstract This article focuses on the process methods and matrix chemistries of ceramic-matrix composites. These methods include pressure-assisted densification, chemical vapor infiltration, melt infiltration, polymer infiltration and pyrolysis, and sol-gel processing. The article discusses...
Abstract
This article focuses on the process methods and matrix chemistries of ceramic-matrix composites. These methods include pressure-assisted densification, chemical vapor infiltration, melt infiltration, polymer infiltration and pyrolysis, and sol-gel processing. The article discusses the use of a ceramic, preceramic, or metal phase as a fluid or vapor phase reactant to form the matrix. Emphasis is placed on microstructural features that influence ultimate composite properties.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003478
EISBN: 978-1-62708-195-5
... be reduced for it to be used in many systems. The costs associated with the long densification times and high costs prevent the composite from being regularly used. Spacecraft Thermal Doublers Spacecraft thermal doublers perform a similar thermal function as thermal planes, but the mechanical...
Abstract
This article presents an overview of the material properties of carbon-carbon composites. It provides information on the applications of carbon-carbon composites in electronic thermal planes, spacecraft thermal doublers, spacecraft thermal shields, spacecraft radiators, and aircraft heat exchangers.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003422
EISBN: 978-1-62708-195-5
... are also discussed. The article concludes with information on the mechanical properties of CCCs. carbon-carbon composites two-directional carbon fibers multiaxial carbon fibers matrix precursor impregnants liquid impregnation chemical vapor infiltration densification pack cementation chemical...
Abstract
This article describes the manufacture, post-processing, fabrication, and properties of carbon-carbon composites (CCCs). Manufacturing techniques with respect to the processibility of different geometries of two-directional and multiaxial carbon fibers are listed in a table. The article discusses matrix precursor impregnants, liquid impregnation, and chemical vapor infiltration (CVI) for densification of CCCs. It presents various coating approaches for protecting CCCs, including pack cementation, chemical vapor deposition, and slurry coating. Practical limitations of coatings are also discussed. The article concludes with information on the mechanical properties of CCCs.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006110
EISBN: 978-1-62708-175-7
... as sintering temperatures increase above 1120 °C (2050 °F). Rounding of the porosity results in increased strengths, especially impact strength. Higher diffusion rates also increase the strength and hardenability of admixed powder compositions. The greater oxide reduction that occurs at higher temperatures...
Abstract
High-temperature sintering of ferrous components continues to be important in the powder metallurgy (PM) industry. Improvements in both production rates and properties are possible as sintering temperatures increase above 1120 deg C. This article provides an overview of the different various stages of the sintering process and the physical, chemical, and metallurgical phenomena occur within the mass of metal powder particles. It discusses the four advantages of high-temperature sintering of various ferrous PM materials: improved mechanical properties, improved physical properties, development of liquid phase, and ability to sinter active elements in alloy steels. The article also provides information on three sources of process control requirements, namely, the powder blend, green density, and sintering conditions.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004002
EISBN: 978-1-62708-185-6
... strain rate, extensive particle cracking at elevated temperatures and strain rates, and densification in the case of powder forging of composites containing different levels of starting porosity. Another study revealed that a fully dense P/M 2080 reinforced with 15% SiC (15 μm, or 0.6 mil) exhibited...
Abstract
Discontinuously reinforced aluminum (DRA) alloy metal-matrix composites (MMCs) represent an advanced aluminum materials concept whereby ceramic particles, or whiskers, are added to aluminum-base alloys through the use of either ingot-melting or casting and/or powder-metallurgy (P/M) techniques. This article begins with a summary of general observations on the forging of discontinuously reinforced composites. It provides information on some of the specific experimental results obtained on various DRA systems, including 2xxx DRA alloys and cast DRA alloys. The article reviews the efforts on the modeling of behavior of specific alloy systems, with a comparison of experimental results to the modeling attempts. It concludes with information on the properties of deformation-processed DRA alloys.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002126
EISBN: 978-1-62708-188-7
... Abstract Ceramics are materials with the potential for a wide range of high-speed finishing operations and for high removal rate machining of difficult-to-machine materials. This article describes the production process, composition, properties, and applications of ceramic tool materials...
Abstract
Ceramics are materials with the potential for a wide range of high-speed finishing operations and for high removal rate machining of difficult-to-machine materials. This article describes the production process, composition, properties, and applications of ceramic tool materials. It presents a comprehensive discussion on the properties and composition of alumina-base tool materials, including alumina and titanium carbide, alumina-zirconia, and silicon carbide whisker reinforced alumina, and silicon nitride base tool materials.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006114
EISBN: 978-1-62708-175-7
... (or repress) tooling has tolerances closer to finish dimensions than the tooling for the first strike. Warm compaction (single pressed) 7.2–7.5 Specially formulated powders to obtain higher green strength at lower compaction pressure Warm compaction (double pressed) 7.4–7.7 … Cold densification...
Abstract
This article describes the capabilities, limitations, advantages, and disadvantages of the powder metallurgy (PM) gear manufacturing process. It discusses the types of gears that can be produced by PM and presents the design guidelines for PM gears. The article provides information on gear tolerances and performance of PM gears. It also explains various procedures to inspect and test the mechanical properties, dimensional specifications, and surface durability (hardness).
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006080
EISBN: 978-1-62708-175-7
... die compaction. Fig. 2 Stress conditions for (a) forging and (b) hot pressing. p , axial pressure; p ′, lateral pressure Because of the differences in speed and deformation mode between forging and hot pressing, the metallurgical mechanisms of densification are different. Forging...
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003421
EISBN: 978-1-62708-195-5
... accelerate the rate of densification, resulting in a pore-free and fine-grained compact. An example of a common hot-pressed composite is silicon carbide (SiC) whisker-reinforced Al 2 O 3 , used in cutting tool applications. A common variant of conventional hot pressing is the slurry infiltration process...
Abstract
Ceramic-matrix composites (CMCs) have ability to withstand high temperatures and have superior damage tolerance over monolithic ceramics. This article describes important processing techniques for CMCs: cold pressing, sintering, hot pressing, reaction-bonding, directed oxidation, in situ chemical reaction techniques, sol-gel techniques, pyrolysis, polymer infiltration, self-propagating high-temperature synthesis, and electrophoretic deposition. The advantages and disadvantages of each technique are highlighted to provide a comprehensive understanding of the achievements and challenges that remain in this area.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001318
EISBN: 978-1-62708-170-2
... structural material. The carbon fibers are generally employed as woven fabric in two-dimensional laminates, or as multidimensional preforms created by textile processing of multifilament tows ( Ref 1 , 2 ). Composite densification is typically accomplished using phenolic resins in a preforming process...
Abstract
Carbon-carbon is a unique composite material in which a nonstructural carbonaceous matrix is reinforced by carbon fibers to create a heat-resistant structural material that finds application in the aerospace and defense industries. This article provides a detailed account of the fundamentals of protecting carbon-carbon composites and explains the various coating deposition techniques, namely, pack cementation, chemical vapor deposition, and slurry coatings. It includes information on the practical limitations of coatings for the carbon-carbon composites.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006106
EISBN: 978-1-62708-175-7
... and powder rolling, can be used to achieve greater consolidation of these powders. Powder Properties As discussed in the Section “Metal Powder Production” in this Volume, the most commonly used bronze composition is 90 wt% Cu and 10 wt% Sn. The nominal 90Cu-10Sn composition may be complemented...
Abstract
Bronze and brass alloys are two key classes of materials in copper-base powder metallurgy applications. They are often compacted using mechanical or hydraulic pressing machines. This article provides an overview of the powder pressing process, providing information on the powder properties of bronze and brass and the roles of lubricant and compaction dies in the pressing process. It discusses the structural defects that originate during the compaction process. The article also describes the major factors that influence the sintering response in bronze, prealloyed bronze, brass, and nickel-silver.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005293
EISBN: 978-1-62708-187-0
..., orthopedic implants, structural castings, and aerospace components. The densification of castings quickly grew to become the largest segment of the commercial HIP industry, accounting for approximately 60% of sales in the United States ( Ref 9 , 10 , 11 , 12 ). Reasons for Using HIP Even very small...
Abstract
Hot isostatic pressing (HIP) is used to eliminate porosity in castings. This article provides a history and an overview of the HIP system. It illustrates the reasons for using HIP and discusses the criteria for selecting HIP process parameters. The main mechanisms by which pores are eliminated during HIP are reviewed. The article describes the effect of HIP on the mechanical properties, shape, and structure of castings as well as the effect of inclusions on as-HIPed properties. It examines the problems encountered in HIP and their solution. The article concludes with information on the economics of HIP processing.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006069
EISBN: 978-1-62708-175-7
..., construction, and metal forming and shaping dies depends on achieving low levels of residual porosity with uniform, homogeneous microstructure and desired chemical composition. Extensive discussion of the application, processing, and properties of hardmetals is found in the literature ( Ref 1 , 2 , 3 , 4...
Abstract
This article discusses two major sintering methods: pressureless and pressure-assisted sintering. Pressureless sintering techniques include vacuum and partial-pressure, hydrogen, and microwave sintering. Pressure-assisted consolidation techniques include overpressure sintering, sintering followed by postsinter hot isostatic pressing, hot pressing, and several rapid hot consolidation techniques. The article describes nitrogen sintering and the sintering of cermets. It reviews the furnaces used for sintering and presents the lubrication removal techniques. The article also outlines the need to control carbon and oxygen to obtain optimal properties and explains microstructure development and grain size control.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006105
EISBN: 978-1-62708-175-7
... on sintering. The actual amount of the lubricant system depends on the compaction pressure and the die material, including the hardness, surface finish, and composition of the die material. Total lubricant content typically ranges from 0.5 to 1.0 wt%. Figure 2 shows the relationship between compacted...
Abstract
Development of the properties of copper powder metallurgy parts is affected by pressing and sintering processes used in the production of components, such as contacts, carbon brushes, and friction materials. This article briefly describes the powder properties of copper and discusses the roles of lubricant and compaction dies in pressing of copper powders. It explains the structural defects that originate during the compaction process of PM parts. The article also provides information on sintering, re-pressing, and re-sintering of copper PM parts.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006136
EISBN: 978-1-62708-175-7
... and cambering during subsequent processing. In a large majority of cases, the final product is a full dense metal strip of significant length. In some other cases, the final product is a porous material intended for use as a filter. The process is well suited for producing multilayer strips and composite...
Abstract
Direct powder rolling (DPR) is a process by which a suitable powder or mixture of powders is compacted under the opposing forces of a pair of rolling mill rolls to form a continuous green strip that is further densified and strengthened by sintering and rerolling. This article discusses the basic principle, process considerations, and advantages of DRP, and describes the application of this process in the manufacture of powder titanium and titanium alloy components. It further illustrates the complexity of the process and describes the benefits of using DRP in terms of economics and product quality.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003113
EISBN: 978-1-62708-199-3
.... Finally, the article describes the process steps and cost considerations in metal injection molding (MIM) and tabulates the composition, and mechanical properties of MIM low-alloy steels. heat treatment low-alloy steels material considerations mechanical properties metal injection molding...
Abstract
This article discusses the production of low-alloy steel parts by powder forging, focusing on the material considerations, such as hardenability and inclusion assessment; and process considerations, including sintering and reheating, metal flow, and secondary operations. It presents the mechanical property data for copper and graphite powders mixed with an iron powder base to produce materials that generally contain 2″ Cu, including tensile, impact, and fatigue properties. Heat treatment procedures used in developing the properties of the prealloyed powder forged materials are also covered. Finally, the article describes the process steps and cost considerations in metal injection molding (MIM) and tabulates the composition, and mechanical properties of MIM low-alloy steels.
1