1-20 of 3004

Search Results for component failure

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006821
EISBN: 978-1-62708-329-4
... Abstract This article focuses on failure analyses of aircraft components from a metallurgical and materials engineering standpoint, which considers the interdependence of processing, structure, properties, and performance of materials. It discusses methodologies for conducting aircraft...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006833
EISBN: 978-1-62708-329-4
..., and/or maintenance are also discussed. In addition, the article provides information on traffic damage and fatigue cracking that result in bridge failures. The need for steels with better fracture toughness in bridge design is also discussed. bridge components bridge design bridge failures fatigue cracking...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
... Abstract This article focuses on common failures of the components associated with the flow path of industrial gas turbines. Examples of steam turbine blade failures are also discussed, because these components share some similarities with gas turbine blading. Some of the analytical methods...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001821
EISBN: 978-1-62708-180-1
... Abstract This article illustrates the defects, which result because of poor-quality welds in the bridge components. The cracks resulting from the use of low fatigue strength details are also discussed. The article describes the effect of out-of-plane distortion in floor-beam-girder connection...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006837
EISBN: 978-1-62708-329-4
... equipment. axle journal failures bearing failures corrosion coupler failures failure analysis pitting corrosion rail failures railroad components track equipment failures wheel failures Freight Railroad Industry The railroad industry is one of the most arduous engineering environments...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006840
EISBN: 978-1-62708-329-4
... Abstract This glossary is a compilation of terms related to the analysis and prevention of component and equipment failures. It is intended to help promote clear thinking and useful failure analysis. The definitions presented are those used in this Volume and reflect a common and modern...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... structural components structural design LIFE ASSESSMENT of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The articles in the “Structural Life Assessment Methods” Section in this Volume are written to provide an overview...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... Abstract Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004124
EISBN: 978-1-62708-184-9
... fuel cells, and missile components. This article discusses high-temperature corrosion in boilers, diesel engines, gas turbines, and waste incinerators. Boilers are affected by stress rupture failures, waterside corrosion failures, fireside corrosion failures, and environmental cracking failures...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006791
EISBN: 978-1-62708-295-2
... to the contacting surfaces. In extreme cases, it may lead to complete prevention of sliding; as such, adhesive wear represents one of the fundamental causes of failure for most metal sliding contacts, accounting for approximately 70% of typical component failures. This article discusses the mechanism and failure...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003525
EISBN: 978-1-62708-180-1
... Abstract This article reviews the analytical techniques most commonly used in plastic component failure analysis. These include the Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
... Abstract This article reviews analytical techniques that are most often used in plastic component failure analysis. The description of the techniques is intended to familiarize the reader with the general principles and benefits of the methodologies, namely Fourier transform infrared...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003746
EISBN: 978-1-62708-177-1
... for metallographic sectioning. Other methods, including the use of hacksaws, shears, burning torches, wire saws, and electrical discharge machining, are also reviewed. The article reviews the issues related to the specimen test location for certification work as well as process troubleshooting and component failure...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... Abstract Wear, a form of surface deterioration, is a factor in a majority of component failures. This article is primarily concerned with abrasive wear mechanisms such as plastic deformation, cutting, and fragmentation which, at their core, stem from a difference in hardness between contacting...
Image
Published: 01 January 1996
Fig. 27 Failure assessment diagram concept for assessing cracked components for brittle fracture and plastic collapse More
Image
Published: 01 January 2002
Fig. 4 Failure assessment diagram concept for assessing cracked components for brittle fracture and plastic collapse More
Image
Published: 01 January 2000
Fig. 32 Failure temperature versus time to rupture for components in a pressurized water reactor. t BH , time to failure of small specimen; t B , time to failure of small specimen without heating time More
Image
Published: 30 August 2021
Fig. 46 Damage from a spun cone bearing failure. All internal components were fused together More
Image
Published: 01 January 1997
Fig. 4 Effect of variations in load and strength on the failure of components. Source: Ref 1 More