Skip Nav Destination
Close Modal
Search Results for
compacted graphite iron castings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 374 Search Results for
compacted graphite iron castings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005325
EISBN: 978-1-62708-187-0
... the advantages of CG irons. compacted graphite iron castings castability chemical composition compacted graphite iron compressive strength corrosion resistance fatigue strength hardness impact properties mechanical properties shear properties tensile properties graphite morphology sonic...
Abstract
This article reviews the graphite morphology, chemical composition requirements, castability, mechanical properties, and corrosion resistance of compacted graphite (CG) irons. It describes the factors affecting the mechanical properties of CG irons. The article also presents the advantages of CG irons.
Image
Published: 01 December 2008
Fig. 8 Stress-strain curves of pearlitic and ferritic compacted graphite iron castings. Straight line indicates modulus of elasticity 144 GPa (20.9 × 10 6 psi). Source: Ref 14
More
Image
in Castability, Product Design, and Production of Compacted Graphite Irons
> Cast Iron Science and Technology
Published: 31 August 2017
Fig. 2 Compacted graphite iron (CGI) castings are produced in series production with the same minimum wall thickness as gray cast iron.
More
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006328
EISBN: 978-1-62708-179-5
... and control technologies has made CGI a viable material for high-volume series production. The article describes the production of compacted graphite iron castings and the process control that depends on the production volume of components made from compacted graphite iron. It also discusses the process...
Abstract
The morphology of the graphite particles in compacted graphite iron (CGI) is intermediate to the graphite particles found in gray iron or ductile iron. This article discusses the castability and product design of compacted graphite iron. The introduction of modern measurement and control technologies has made CGI a viable material for high-volume series production. The article describes the production of compacted graphite iron castings and the process control that depends on the production volume of components made from compacted graphite iron. It also discusses the process control for high-volume CGI commonly based on thermal analysis.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006312
EISBN: 978-1-62708-179-5
... castings. compacted graphite iron graphite morphology microstructure tensile strength MARCH 20, 1948, IS WELL KNOWN to cast iron metallurgists as the date on which K.D. Millis, A.P. Gagnebin, and N.B. Pilling filed the first patent application for the production of ductile iron. The patent...
Abstract
Compacted graphite iron (CGI) invariably includes some nodular (spheroidal) graphite particles, giving rise to the definition of the microstructure in terms of percent nodularity. This article discusses the graphite morphology and mechanical and physical properties of CGI. The mechanical and physical properties of CGI with ferritic and pearlitic matrix structures are summarized in a table. The article describes the standards for CGI, with the definition of the grades based on the minimum tensile strength. It also provides information on the applications of compacted graphite iron castings.
Image
Published: 31 August 2017
Fig. 26 Ductile iron and compacted graphite iron produced from the same base iron, 9t coreless induction furnace melting. (a) Graphite nodularity and (b) residual magnesium content at different taps; (c) nodularity-final magnesium content relationship; (d) typical compacted graphite iron
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003109
EISBN: 978-1-62708-199-3
.... A listing of tensile properties of various CG irons produced by different melt treatment methods is also provided. chemical composition compacted graphite iron graphite morphology mechanical properties physical properties COMPACTED GRAPHITE (CG) IRONS are the newest member of the cast iron...
Abstract
This article discusses the graphite morphology, chemical composition, mechanical and physical properties, and applications of compacted graphite (CG) irons. It compares the selected properties of gray, ductile and CG irons, and lists their property requirements as per ASTM A 842. A listing of tensile properties of various CG irons produced by different melt treatment methods is also provided.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006315
EISBN: 978-1-62708-179-5
...), while modification is essential to produce compacted graphite iron (intermediate level) and ductile iron. The article discusses the most important aspects of a gray cast iron inoculation treatment and the factors influencing its inoculation efficiency. It describes the modification and inoculation...
Abstract
This article describes the modification and inoculation of cast iron, and schematically illustrates the major effects of inoculation in gray cast irons. Inoculation could be considered as a common liquid-state treatment for all commercial cast irons (gray/compacted/ductile irons), while modification is essential to produce compacted graphite iron (intermediate level) and ductile iron. The article discusses the most important aspects of a gray cast iron inoculation treatment and the factors influencing its inoculation efficiency. It describes the modification and inoculation of ductile cast iron and compacted graphite cast iron.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007035
EISBN: 978-1-62708-387-4
... Abstract The cast iron family includes several different groups, including gray iron, ductile iron, compacted graphite iron, malleable iron, white iron, and many different grades within each of these alloy groups. This article addresses issues specific to gray iron, but in many instances...
Abstract
The cast iron family includes several different groups, including gray iron, ductile iron, compacted graphite iron, malleable iron, white iron, and many different grades within each of these alloy groups. This article addresses issues specific to gray iron, but in many instances the discussion can be related to the other cast iron groups and the various grades within those groups. It discusses the usage of techniques and procedures in cast iron fractography. The article presents a list of common defects that can initiate failure.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006294
EISBN: 978-1-62708-179-5
... chemical composition, cooling rate, and heat treatment. The article describes some basic principles of cast iron metallurgy. It discusses the main effects of the chemical composition of ductile iron and compacted graphite (CG) iron. The composition of malleable irons must be selected in such a way...
Abstract
This article discusses criteria that can be used for the classification of cast iron: fracture aspect, graphite shape, microstructure of the matrix, commercial designation, and mechanical properties. It addresses the main factors of influence on the structure of cast iron, including chemical composition, cooling rate, and heat treatment. The article describes some basic principles of cast iron metallurgy. It discusses the main effects of the chemical composition of ductile iron and compacted graphite (CG) iron. The composition of malleable irons must be selected in such a way as to produce a white as-cast structure and to allow for fast annealing times. Some typical compositions of malleable irons are presented in a table. The article concludes with information on special cast irons.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006338
EISBN: 978-1-62708-179-5
..., nitrogen defects, and abnormal graphite morphology, found in gray iron. It concludes with a discussion on surface defects in compacted graphite iron. abnormal graphite morphology blowholes casting defects compacted graphite iron ductile cast iron gray iron hydrogen pinholes nitrogen defects...
Abstract
The International Committee of Foundry Technical Associations has identified seven basic categories of casting defects: metallic projections, cavities, discontinuities, defective surfaces, incomplete casting, incorrect dimension, and inclusions or structural anomalies. This article presents some of the common defects in each of the seven categories in a table. It discusses common defects determined during the examination of samples of ductile cast iron in Elkem's research facility in Norway. The article reviews common defects, such as shrinkage cavities, blowholes, hydrogen pinholes, nitrogen defects, and abnormal graphite morphology, found in gray iron. It concludes with a discussion on surface defects in compacted graphite iron.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006346
EISBN: 978-1-62708-179-5
...-strength pearlitic FG iron, and ferritic spheroidal graphite (SG) iron in the as-cast condition Table 1 Comparison of properties of cerium-treated compacted graphite (CG) iron with flake graphite (FG) iron of the same chemical composition, high-strength pearlitic FG iron, and ferritic spheroidal...
Abstract
The main factors affecting the mechanical properties of compacted graphite irons both at room temperatures and at elevated temperatures are composition, structure (nodularity and matrix), and section size. This article presents a comparison between some properties of flake graphite (FG), compacted graphite (CG), and spheroidal graphite (SG) irons in a table. It discusses the effects of composition, structure, and section size on the mechanical properties of compacted graphite irons. The compressive and shear properties, modulus of elasticity, impact properties, fatigue strength, and elevated-temperature properties of compacted graphite irons are also reviewed.
Image
Published: 01 January 1990
Fig. 23 Scaling and growth of heavy section flake and compacted graphite cast irons at 600 °C (1110 °F). Source: Ref 9
More
Image
Published: 01 December 2004
Fig. 72 As-cast iron with compacted graphite (Fe-3.7%C-2.3%Si-0.21%Mn-0.03%P-0.01%S-0.82%Ni-0.02%Mg). Graphite size is 80 to 160 μm. As polished. 100×
More
Image
Published: 01 December 2004
Fig. 91 As-cast iron with compacted graphite (Fe-2.8%C-1.9%Si-0.55%Mn-0.04%P-0.2%S-0.018%Mg). Ferritic-pearlitic matrix. Etched with 4% nital. 100×
More
Image
Published: 31 August 2017
Fig. 23 Microstructure of compacted graphite cast iron produced from a high-RE-containing MgFeSi alloy. (a) 5 mm (0.2 in.) section size. (b) 35 mm (1.4 in.) section size. Original magnification: 100×
More
Image
Published: 31 August 2017
Image
Published: 31 August 2017
Fig. 19 Scaling and growth of heavy-section flake and compacted graphite cast irons at 600 °C (1110 °F). CE, carbon equivalent. Source: Ref 11
More
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006316
EISBN: 978-1-62708-179-5
... graphite irons and compacted graphite irons are more susceptible to the casting skin effect than GCI. The negative impact of the casting skin (having type D graphite and free ferrite) on mechanical properties can be effectively reduced by shot blasting. The improvement of the tensile strength and fatigue...
Abstract
Thin-wall gray cast iron (TWGCI) can be seen as a potential material for the preparation of lightweight castings in automotive engineering applications. This article discusses the most important challenges for TWGCI: cooling rate, solidification, macrostructure, microstructure, and chilling tendency. It reviews the tensile properties and thermophysical properties of gray cast iron. The article describes the variables that influence molten iron preparation: charge materials, melting furnace thermal regime, chemical composition, modification and inoculation treatment, holding time/pouring procedure, mold properties (mold temperature, thermophysical properties of mold and mold coating), and casting design.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0009206
EISBN: 978-1-62708-161-0
... Abstract This article discusses the classification schemes for cast irons and describes the characteristics of major categories, including gray iron, white iron, ductile iron, compacted graphite iron, mottled iron, malleable iron, and austempered ductile iron. It also discusses some...
Abstract
This article discusses the classification schemes for cast irons and describes the characteristics of major categories, including gray iron, white iron, ductile iron, compacted graphite iron, mottled iron, malleable iron, and austempered ductile iron. It also discusses some of the basic principles of cast iron metallurgy. When discussing the metallurgy of cast iron, the main factors of influence on the structure include chemical composition, cooling rate, liquid treatment, and heat treatment. In terms of commercial status, cast irons can be classified as common cast irons and special cast irons. Special cast irons differ from the common cast irons mainly in the higher content of alloying elements. Alloying elements can be added in common cast iron to enhance some mechanical properties. They influence both the graphitization potential and the structure and properties of the matrix.
1