Skip Nav Destination
Close Modal
Search Results for
combustion and inert gas fusion analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 110 Search Results for
combustion and inert gas fusion analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
... covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion...
Abstract
Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used. The choice of appropriate analytical techniques is determined by the specific chemical information required, the condition of the sample, and any limitations imposed by interested parties. This article discusses some of the commonly used quantitative chemical analysis techniques for metals. The discussion covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion analysis is provided.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003250
EISBN: 978-1-62708-199-3
... Abstract The overall chemical composition of metals and alloys is most commonly determined by X-ray fluorescence (XRF) and optical emission spectroscopy (OES), and combustion and inert gas fusion analysis. This article provides information on the capabilities, uses, detection threshold...
Abstract
The overall chemical composition of metals and alloys is most commonly determined by X-ray fluorescence (XRF) and optical emission spectroscopy (OES), and combustion and inert gas fusion analysis. This article provides information on the capabilities, uses, detection threshold and precision methods, and sample requirements. The amount of material that needs to be sampled, operating principles, and limitations of the stated methods are also discussed.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001115
EISBN: 978-1-62708-162-7
... in the articles “High-Temperature Combustion” and “Inert Gas Fusion” in Materials Characterization, Volume 10 of ASM Handbook, formerly 9th Edition Metals Handbook. Impurity concentrations in two titanium samples and a chromium sample characterized using glow discharge mass spectroscopy (GDMS) method...
Abstract
The electronic microcircuit industry has placed severe demands on metal suppliers to provide metals of the highest reproducible purity attainable as a result of the constant quest for the true values of physical and chemical properties of metals. This article describes the commonly used methods for ultrapurification of metals produced by electrolytic processes, including fractional crystallization, zone refining, vacuum melting, distillation, chemical vapor deposition, and solid state refining techniques. In addition, it describes the trace element analysis and resistance-ratio test methods used to characterize purity. Tables list the values for resistance ratios of zone-refined metals and their corresponding chemical compositions, and provide an example of the detection of impurities to concentrations in the parts per billion range, utilizing a combination of the glow discharge mass spectroscopy method and Leco combustion methods.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005718
EISBN: 978-1-62708-171-9
... feeder using a carrier gas. Fig. 5 Powder flame spray system In flame spray processes, the oxyfuel ratio and total gas flow are adjusted to produce the desired thermal output. Optional air jets, downstream of the combustion zone, may further adjust the thermal and velocity profile...
Abstract
This article presents the major thermal spray processes and their subsets, presenting each of the commercially significant processes together with some of their important variations. Each process is presented along with the attributes that influence coating structure and performance. The article summarizes the essential equipment components and necessary controls. The various thermal spray processes are conventional flame spray, detonation gun, high-velocity oxyfuel spray, electric arc spray, and plasma arc spray. Other processes, such as cold spray, underwater plasma arc spray, and extended-arc and other high-energy plasma arc spray, are also considered.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006960
EISBN: 978-1-62708-439-0
.... Finally, the facility itself must be considered part of those risk hazards. The facility carries risk with the environment within that facility. This environment includes environmental conditions such as humidity and temperature. Other factors found in a facility are electrical and inert gas safety...
Abstract
This article provides an overview of the concepts of environmental, health, and safety (EH&S) risk incidents, then discusses these concepts relative to additive manufacturing (AM): the multiple intrants, process parameters, and equipment, as well as the resulting products and wastes. The article discusses additive manufacturing hazards, which are broken down into material hazards, equipment/process hazards, and facility hazards. The environmental impact of AM and the development of EH&S standards for AM also are covered in the article.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001726
EISBN: 978-1-62708-178-8
... combustion, inert gas fusion, or vacuum fusion analysis (all having “G”s in the appropriate columns) would have to be employed for carbon determination. The summaries in the articles “Optical Emission Spectroscopy” and “Spark Source Mass Spectrometry,” however, indicate that these methods can analyze...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007021
EISBN: 978-1-62708-439-0
.... For electron beam powder-bed fusion, the common size range is 45 to 106 μm. Fig. 7 Particle size distribution from typical vacuum inert gas atomized production, showing the relative ranges typically used in different additive manufacturing modalities: binder jet, laser powder-bed fusion (L-PBF...
Abstract
This article provides an overview of the supply chain for metallic additively manufactured materials, with an emphasis on spherical alloy powders. The article describes powder production processes as well as the various metal alloys that can be produced using powder AM techniques. It also reviews the basic characteristics of powder feedstocks and the management of metallic powders.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003610
EISBN: 978-1-62708-182-5
...; with the alkali metals, the reaction is vigorous enough to be potentially hazardous, particularly with potassium, rubidium, and cesium. Use of inert gas covers and the exclusion of moisture are the best defenses. Even with the nonalkali metals, where the reactions with water are slow, water, such as that found...
Abstract
This article provides information on the liquid lithium systems that are exposed to liquid metal. It discusses the forms in which liquid-metal corrosion is manifested. The influence of several key factors on the corrosion of metals and alloys by liquid-metal systems or liquid-vapor metal coolants is described. Some information on safety precautions for handling liquid metals, operating circulating systems, dealing with fire and spillage, and cleaning contaminated components, are also provided.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001282
EISBN: 978-1-62708-170-2
..., and biomedical. Some specific examples are given in the section “Uses of Thermal Spray Coatings” in this article. Processes Flame Spray Flame spray uses combustible gas as a heat source to melt the coating material ( Fig. 3 ). Flame spray guns are available to spray materials in either rod, wire...
Abstract
This article introduces thermal spray coatings and describes the various types of coating processes and coating devices, including the flame spray, electric-arc spray, plasma spray, transferred plasma arc, high-velocity oxyfuel, and detonation gun. It provides information on the surface preparation methods and finishing treatments of coated parts. The article also explains the tests to evaluate the coating quality and the effects of coating structures and mechanical properties on coated parts. It concludes with a discussion on the uses of thermal spray coatings.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006126
EISBN: 978-1-62708-175-7
..., on the element to be detected. For carbon, sulfur, nitrogen, and oxygen detection, bulk chemical analysis can be obtained using high-temperature combustion and inert gas fusion. Provided great care is taken in sample preparation, resolution in the ppm range can be achieved. Because of the small scale...
Abstract
This article discusses the capabilities and limitations of various material characterization methods that assist in the selection of a proper analytical tool for analyzing particulate materials. Commonly used methods are microanalysis, surface analysis, and bulk analysis. The techniques used for performing microanalysis include scanning electron microscopy and electron probe X-ray microanalysis. The article describes surface analysis techniques, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, and ion-scattering spectroscopy. Bulk analysis techniques, such as X-ray powder diffraction, inductively coupled plasma atomic emission spectroscopy, atomic absorption spectroscopy, and atomic fluorescence spectrometry, are also discussed.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001739
EISBN: 978-1-62708-178-8
.... The reaction vessel for sinters and fusions is usually a crucible. Its material composition must be critically matched to the salt medium and the desired analyte. Muffle furnaces or gas burners generally provide the heat source. Sintering procedures specify an optimum temperature, which should not be exceeded...
Abstract
This article provides information on basic chemical equilibria, wet analytical chemistry, and the appropriateness of classical wet methods. It focuses on nonoxidizing acids and oxidizing acids. The article includes information on the qualitative methods used to identify materials by wet chemical reaction. Gravimetry, in which a chemical species is weighed; titrimetry, which involves volume measurement of a liquid reactant; and a host of separation techniques, which require diverse forms of laboratory manipulation, are discussed. The article briefly describes the partitioning of oxidation states as well as those applications in surface studies and rapid material identification in which chemical techniques have proved useful.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006056
EISBN: 978-1-62708-175-7
... and subsequent detection/quantification through infrared absorption. Nondispersive infrared detectors are used to analyze oxygen and hydrogen concentrations after inert gas fusion. Nitrogen is analyzed in the same combusted stream using a thermal conductivity detector. Microstructural Evaluation...
Abstract
Quality control of cemented carbides includes the evaluation of physical and chemical properties of constituent raw material powders, powder blends/formulations, green compacts, and fully dense finished product. This article provides a summary of the underlying principles and size ranges for the American Society for Testing and Materials (ASTM) standard methods of particle sizing and distribution. It presents the methods used to analyze the chemical composition of cemented carbide materials in a tabular form. The article also presents information on microstructural evaluation and physical and mechanical property evaluation of cemented carbides.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001280
EISBN: 978-1-62708-170-2
.... Phosphate-bonded coatings are used primarily to prevent deterioration of the substrate metal during high-temperature service. Applications include combustion-chamber linings, re-entry leading edges, hot gas ducts, and high-temperature insulation repairs. Cermets Table 9 lists the constituents...
Abstract
Ceramic coatings are applied to metals to protect them against oxidation and corrosion at room temperature and at elevated temperatures. This article provides a detailed account of the factors to be considered when selecting a ceramic coating and describes the characteristics of various coating materials, namely, silicate glasses, oxides, carbides, silicides, and cermets. It reviews ceramic coating methods: brushing, spraying, dipping, flow coating, combustion flame spraying, plasma-arc flame spraying, detonation gun spraying, pack cementation, fluidized-bed deposition, vapor streaming, troweling, and electrophoresis. The article also includes information on the evaluation of the quality of ceramic coatings.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006629
EISBN: 978-1-62708-213-6
... of the position of equilibrium is important in all of the analysis discussed herein, with the magnitude of K controlling everything from the strength of an acid solution to the ability of a molecule to bind a metal cation. The equilibrium constant can also be assessed for gas-phase reactions. In gas-phase...
Abstract
This article focuses on wet chemical methods that have stood the test of time in laboratories around the world. It begins with a description of the appropriateness of classical wet methods. This is followed by sections on sampling procedures, basic chemical equilibria, and wet analytical chemistry. Mechanical methods and nonoxidizing acids and/or acid mixtures for dissolving solid samples for wet chemical analysis are then reviewed. Qualitative methods that are used to identify materials by wet chemical reaction are also included. The article provides information on various methods for the separation of chemical mixtures and on the types of gravimetry and titrimetry. Strategies for removing inclusions are also included to aid in their compositional understanding. The article also briefly describes the processes involved in chemical surface studies and partitioning of oxidation states. It ends by presenting some examples of the applications of classical wet methods.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005795
EISBN: 978-1-62708-165-8
.... The thermal conductivity of the gas stream is measured in a test cell and compared to a standard, whereby the amount of carbon dioxide can be determined. For nitrogen, the inert gas fusion method is used. By heating the sample in helium at high temperature (≥1900 °C, or 3450 °F), molecular nitrogen (N 2...
Abstract
Case depth is the normal distance from the surface of the steel to the start of the core. Measurement of case depth is highly sensitive to the type of case hardening, original steel composition, quenching condition, and even to the testing method. This article describes the various methods of measuring case depth in steels, including chemical methods such as the combustion analysis and spectrographic analysis, microhardness test method, macroscopic and microscopic visual methods, and nondestructive methods. It contains a table that provides approximate equivalent hardness numbers for steel.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006579
EISBN: 978-1-62708-290-7
... along columnar grain boundaries or perpendicular to the build direction, can also be present due to insufficient energy density in that region during scanning, and spherical gas pores can form from multiple mechanisms, including entrapped atomization gases inherent in the powder feedstock or through...
Abstract
This article is a detailed account of additive manufacturing (AM) processes for copper and copper alloys such as copper-chromium alloys, GRCop, oxide-dispersion-strengthened copper, copper-nickel alloys, copper-tin alloys, copper-zinc alloys, and copper-base shape memory alloys. The AM processes include binder jetting, ultrasonic additive manufacturing, directed-energy deposition, laser powder-bed fusion, and electron beam powder-bed fusion. The article presents a review of the literature and state of the art for copper alloy AM and features data on AM processes and industrial practices, copper alloys used, selected applications, material properties, and where applicable, compares these data and properties to traditionally processed materials. The data presented and the surrounding discussion focus on bulk metallurgical processing of copper components. The discussion covers the composition and performance criteria for copper alloys that have been reported for AM and discusses key differences in process-structure-property relationships compared to conventionally processed material. The article also provides information on feedstock considerations for copper powder handling.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001778
EISBN: 978-1-62708-178-8
... that it will cause corrosion in adjacent electrical components. The presence of sulfate is cause for more concern because the balloons are formed by blowing sulfur dioxide gas through the molten glass, and the gas may become entrained inside them and escape by diffusion or when the thin cell walls are broken...
Abstract
Ion chromatography (IC) is an analytical technique that uses columns packed with ion exchange resins to separate ions in aqueous solutions and dynamically elute them to a detector. This article provides information on the different modes of detection, namely, eluent-suppressed conductivity detection, single-column ion chromatography with conductivity detection, ion chromatography with spectrophotometric detection, and amperometric electrochemical detection. It describes the modes of separation techniques in IC and reversed-phase IC. The article discusses the detection capabilities of IC, the procedures for preparing solid and liquid samples, as well as the applications of IC.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006090
EISBN: 978-1-62708-175-7
... to a centralized facility for reduction. Automobile air bag inflators use sodium azide and iron oxide powder as the propellant. It is important in this application that the gas produced be inert because it is exhausted into the interior of a vehicle during use. The reaction is: 2 NaN 3 + 0.33 Fe 2...
Abstract
The primary market for metal powder is the production of powder metallurgy (PM) parts, which are dominated primarily by iron and copper powders. This article reviews the chemical and pyrotechnics applications of ferrous and nonferrous powders. It describes the characteristics of iron powder used in oxygen scavengers and chemical reactive warmers and heaters. Metal powders used as fuels in solid propellants, pyrotechnic devices, explosives, and similar applications are reviewed. Atomized aluminum, magnesium, tungsten, and zirconium powders are also discussed.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
... commonly used purge gas, but helium, argon, air, and oxygen can also be used for specific purposes. Often, two consecutive heating runs are performed to evaluate a sample. A controlled cooling run is performed after the initial analysis to erase the heat history of the sample. The first heating run...
Abstract
This article reviews analytical techniques that are most often used in plastic component failure analysis. The description of the techniques is intended to familiarize the reader with the general principles and benefits of the methodologies, namely Fourier transform infrared spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical techniques are supplemented by a series of case studies to illustrate the significance of each method. The case studies also include pertinent visual examination results and the corresponding images that aided in the characterization of the failures.
1