Skip Nav Destination
Close Modal
Search Results for
cold-work-induced strengthening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 427 Search Results for
cold-work-induced strengthening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1996
Fig. 15 Effect of cold-work-induced strengthening on fracture toughness. The percentage of cold work is provided next to data points. Source: Ref 49 , 52
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002404
EISBN: 978-1-62708-193-1
... orientation, strain rate, thermal aging, and neutron irradiation on base metal and weld toughness. It discusses the effect of cold-work-induced strengthening on fracture toughness. The article examines the fracture toughness behavior of aged base metal and welding-induced heat-affected zones. It concludes...
Abstract
This article describes the fracture toughness behavior of austenitic stainless steels and their welds at ambient, elevated, and cryogenic temperatures. Minimum expected toughness values are provided for use in fracture mechanics evaluations. The article explains the effect of crack orientation, strain rate, thermal aging, and neutron irradiation on base metal and weld toughness. It discusses the effect of cold-work-induced strengthening on fracture toughness. The article examines the fracture toughness behavior of aged base metal and welding-induced heat-affected zones. It concludes with a discussion on the Charpy energy correlations for aged stainless steels.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003136
EISBN: 978-1-62708-199-3
... copper or may be intentionally alloyed to molten cathode copper, also imparts resistance to softening to cold-worked metal. Silver-bearing coppers and cadmium-bearing coppers are used for applications such as automotive radiators and electrical conductors that must operate at temperatures above about 200...
Abstract
Copper and copper alloys are used extensively in structural applications in which they are subject to moderately elevated temperatures. At relatively low operating temperatures, these alloys can undergo thermal softening or stress relaxation, which can lead to service failures. This article is a collection of curves and tables that present data on thermal softening and stress-relaxation in copper and copper alloys. Thermal softening occurs over extended periods at temperatures lower than those inducing recrystallization in commercial heat treatments. Stress relaxation occurs because of the transformation of elastic strain in the material to plastic, or permanent strain.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006282
EISBN: 978-1-62708-169-6
... titanium alloys ALMOST ALL METALS AND METAL ALLOYS can be strengthened by being subjected to cold working. Titanium and titanium alloys are no exceptions. The mode of plastic deformation that takes place may vary considerably among different metals or metal alloys. The properties of metals that have...
Abstract
This article provides an in-depth treatment on the deformation and recrystallization of titanium alloys. It provides information on the predominant mode of plastic deformation that occurs in titanium in terms of the most common crystallographic planes. The article explains the relationship of the recovery process to the recrystallization, grain-growth process, and the effects of time and temperature on stress relief. It describes the factors that influence the rate of recrystallization and the conditions required for neocrystallization to occur. The article explains the mechanism of strain hardening and its effects on the mechanical properties of titanium alloys. It also discusses the factors that influence the superplasticity of titanium alloys.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006276
EISBN: 978-1-62708-169-6
...-worked tempers to meet standard requirements based on temper names applicable to specific products. (c) Tempers produced by controlled amounts of cold work followed by a thermal treatment to produce order strengthening. (d) Annealed to meet specific mechanical property requirements. (e...
Abstract
This article provides information on the Unified Numbering System designations and temper designations of copper and copper alloys. It discusses the basic types of heat treating processes of copper and copper alloys, namely, homogenizing, annealing, and stress relieving, and hardening treatments such as precipitation hardening, spinodal hardening, order hardening, and quench hardening and tempering. The article presents tables that list the compositions and mechanical properties of copper alloys. It also discusses two strengthening mechanisms of copper alloys, solid-solution strengthening and work hardening. Finally, the article provides information on the equipment used for the heat treating of copper and copper alloys, including batch-type atmosphere furnaces, continuous atmosphere furnaces, and salt baths.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
... for relief of stresses (induced by quenching) and more complex aging sequences (double or even triple aging), along with the incorporation of cold work. For more details, see the article “Metallurgy of Heat Treatable Aluminum Alloys” in this Volume. Non-heat-treatable aluminum is strengthened from...
Abstract
This article describes the different types of precipitation and transformation processes and their effects that can occur during heat treatment of various nonferrous alloys. The nonferrous alloys are aluminum alloys, copper alloys, magnesium alloys, nickel alloys, titanium alloys, cobalt alloys, zinc alloys, and heat treatable silver alloys, gold alloys, lead alloys, and tin alloys. It also provides a detailed discussion on the effects due to precipitation and transformation processes in these non-ferrous alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001418
EISBN: 978-1-62708-173-3
... Abstract Non-heat-treatable aluminum alloys constitute a group of alloys that rely solely upon cold work and solid solution strengthening for their strength properties. This article focuses on the weldability and weld properties of different classes on non-heat-treatable aluminum alloys...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006261
EISBN: 978-1-62708-169-6
... Remove residual stresses that develop during mechanical working or fabrication Refine the microstructure, such as promoting new grain formation during recrystallization annealing Redistribute or dissolve second-phase particles, such as carbides and/or intermetallic phases Precipitate desirable...
Abstract
This article provides information on nickel alloying elements, and the heat treatment processes of various nickel alloys for applications requiring corrosion resistance and/or high-temperature strength. These processes are homogenization, annealing, solution annealing, solution treating, stabilization treatment, age hardening, stress relieving, and stress equalizing. Discussion of furnaces, fixtures, and atmospheres is included. Nickel alloys used for the heat treatment processes include corrosion-resistant nickel alloys, heat-resistant nickel alloys, nickel-beryllium alloys, special-purpose alloys such as nitinol shape memory alloys, low-expansion alloys, electrical-resistance alloys and soft magnetic alloys. Finally, the article focuses on heat treatment modeling for selecting the appropriate heat treatment process.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006267
EISBN: 978-1-62708-169-6
... tend to stabilize the hcp structure and decrease stacking-fault energy ( Ref 3 ). The fcc-to-hcp transformation reaction is quite sluggish, even for pure cobalt. However, in metastable compositions, it can be promoted by cold work via a mechanism involving the coalescence of stacking faults ( Ref 4...
Abstract
Cobalt is used as an alloying element in alloys for various applications. This article provides a detailed account of the metallurgy of cobalt-base alloys. It focuses on the compositions, properties, and applications of cobalt-base alloys, which include wear-resistant cobalt alloys, heat-resistant cobalt alloys, and cobalt-base corrosion-resistant alloys. The article also describes the heat treatments such as annealing and aging, for these alloys.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002462
EISBN: 978-1-62708-194-8
... resistance by solid-solution strengthening and work hardening. Although in principle this phase diagram exhibits a positively sloping solvus, a necessary condition for a precipitation-hardening system, difficulty in nucleating the face-centered cubic (fcc) Al 3 Mg 2 precipitates has precluded...
Abstract
This article focuses on the monolithic form of nonferrous alloys, including aluminum, copper, nickel, cobalt, titanium, zinc, magnesium, and beryllium alloys. Each metal and alloy offers unique combinations of useful physical, chemical, and structural properties that are made available by its particular composition and the proper choice of processing method. The article describes the composition, designation system, properties, and processing method of these metals and alloys. It discusses the effect of alloying elements in these alloys. The article explains microstructure/property relationships that are used to make specific properties available to the designers of structural applications. It provides examples of phase diagrams that illustrate eutectic and peritectic reactions.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006275
EISBN: 978-1-62708-169-6
... processes and creep properties have great significance. Attempts to strengthen the metal by reducing the grain size or by cold working (strain hardening) have proved unsuccessful. Lead-tin alloys, for example, may recrystallize immediately and completely at room temperature. Lead-silver alloys respond...
Abstract
This article discusses the various heat treating processes, namely, solid-solution hardening, solution treating, solution aging and dispersion hardening, for low-melting-point alloys such as lead alloys, tin-rich alloys, and zinc alloys. Heat treating of tin-rich alloys has been practiced for bearing alloys, pewterware, and organ pipe alloys. The article reviews the principles underlying these applications.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006286
EISBN: 978-1-62708-169-6
... to improve ease of fabrication during both hot and cold working operations. Addition of sufficient β stabilizer to titanium compositions also confers a heat treatment capability that permits significant strengthening to be achieved by controlled decomposition of β phase to α phase during the heat treatment...
Abstract
Quenching is a widely used technique to strengthen titanium alloys. This article presents the metallurgical and structural background underlying the specific techniques applied in the quenching of various titanium alloys, and the ways to control and reduce residual stresses induced from quenching or other thermal or mechanical processes. It discusses the types and microstructures of titanium alloys, namely, alpha, alpha-beta, and beta alloys, and describes the general effects of the various heat treatments. The article provides information on quenching media, quenching rate, section size, and martensitic transformation in quenched titanium alloys. It shows how residual stresses in titanium alloys are evaluated and controlled. Finally, the article describes the stress-relief treatments used to reduce residual stresses.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006388
EISBN: 978-1-62708-192-4
... and dimensional stability H Strain hardened (wrought products only) Applied to products that are strengthened through cold working. The strain hardening may be followed by supplementary thermal treatment, which produces some reduction in strength. The “H” is always followed by two or more digits, for example...
Abstract
This article begins by describing the designations of cast and wrought aluminum alloys. It explains the effects of main alloying elements in aluminum alloys: boron, chromium, copper, iron, lithium, magnesium, manganese, nickel, phosphorus, silicon, sodium, strontium, titanium, and zinc. The article describes the microstructure of cast and wrought aluminum alloys and the various strengthening mechanisms, including solid solution, grain refinement, strain or work hardening, precipitation (or age) hardening, and dispersoid strengthening. The article explicates the tribological behavior of aluminum alloys, aluminum-base composites, and metal-matrix composites. It presents the effect of material-related parameters and external factors on wear behavior and transitions of aluminum-silicon alloys. The article also presents the most important factors affecting the dry sliding wear behavior of particle-reinforced aluminum-base composites against a steel counterface.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003995
EISBN: 978-1-62708-185-6
.... The article describes the metallurgical processes in grain refinement of austenite steel by hot working, such as recovery and recrystallization and strain-induced transformation. The grain refinement in high strength low alloy steel by alloy addition is also discussed. The article provides an outline...
Abstract
Thermomechanical processing (TMP) refers to various metal forming processes that involve careful control of thermal and deformation conditions to achieve products with required shape specifications and good properties. This article describes TMP methods in producing hot-rolled steel and reviews how improvements in the strength and toughness depend on the synergistic effect of microalloy additions and on carefully controlled thermomechanical conditions. It discusses TMP variables and the general distinctions between conventional hot rolling and common types of controlled-rolling schedules. The article describes the metallurgical processes in grain refinement of austenite steel by hot working, such as recovery and recrystallization and strain-induced transformation. The grain refinement in high strength low alloy steel by alloy addition is also discussed. The article provides an outline on the key stages of deformation, and the required metallurgical information at each of these stages.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006265
EISBN: 978-1-62708-169-6
...-solution-strengthened alloys to heat treatment is very much dependent on the initial material condition. Generally speaking, when the material is not in the cold- or warm-worked condition, the principal response to heat treatment is a change in the amount and morphology of secondary carbide phases present...
Abstract
This article describes the heat treatment of wrought solid-solution and precipitation-hardening alloys with a focus on the major families of wrought nickel alloys. It also provides information on the heat treatment of some representative solid-solution alloys in the Monel (Ni-Cu), Inconel (Ni-Cr-Mo), Hastelloy (Ni-Mo-Cr), and Incoloy (Ni-Fe-Cr) families of alloys. The heat treatment processes for gamma prime nickel alloys, gamma prime nickel-iron superalloys, and gamma double-prime nickel-iron superalloys are also included. The article also provides information on age-hardenable alloys, and the effects of cold work on aging response and grain growth with examples.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001032
EISBN: 978-1-62708-161-0
... sophisticated test for formability in cold upset forging, and it is a common quality control test in the hot forging of carbon and alloy steels. Compression forging is a useful method of assessing the frictional conditions in hot working. The principal disadvantage of the compression test is that tests...
Abstract
This article discusses the bulk formability or workability of steels. It describes their formability characteristics and presents procedures for various formability tests used for carbon and alloy steels. Tests for bulk formability can be divided into two main categories: primary tests and specialized tests. The article compares the processing of microalloyed plate and bar products. The article focuses on the use of torsion testing to evaluate the forgeability of carbon and alloy steels and presents information on measuring flow stress. The article discusses the metallurgy and thermomechanical processing of high-strength low-alloy (microalloyed) steels and the various parts of the rolling operation. The article summarizes some of the common tests for determining formability in open-die and closed-die forgings.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001025
EISBN: 978-1-62708-161-0
... condition. In addition to hot-rolled products, HSLA steels are also furnished as cold-rolled sheet and forgings. This article describes the different categories of HSLA steels and provides a summary of characteristics and intended uses of HSLA steels described in the American Society for Testing...
Abstract
This article considers four types of high-strength structural steels: heat-treated low-alloy steels, as-rolled carbon-manganese steels, heat-treated (normalized or quenched and tempered) carbon steels, and as-rolled high-strength low-alloy (HSLA) steels (which are also known as microalloyed steels). The article places emphasis on HSLA steels, which are an attractive alternative in structural applications because of their competitive price per-yield strength ratios. HSLA steels are primarily hot-rolled into the usual wrought product forms and are furnished in the as-hot-rolled condition. In addition to hot-rolled products, HSLA steels are also furnished as cold-rolled sheet and forgings. This article describes the different categories of HSLA steels and provides a summary of characteristics and intended uses of HSLA steels described in the American Society for Testing and Materials (ASTM) specifications. The article also presents some applications of HSLA steels.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006278
EISBN: 978-1-62708-169-6
... Abstract Cast and wrought coppers can be strengthened by cold working. This article provides information on minor alloying elements, such as beryllium, silicon, nickel, tin, zinc, and chromium, used to strengthen copper. It details annealing and recrystallization and grain growth...
Abstract
Cast and wrought coppers can be strengthened by cold working. This article provides information on minor alloying elements, such as beryllium, silicon, nickel, tin, zinc, and chromium, used to strengthen copper. It details annealing and recrystallization and grain growth characteristics of copper. The article also discusses the tensile-stress-relaxation behavior of selected types of copper wires.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005455
EISBN: 978-1-62708-196-2
... to structural materials, namely, solid-solution strengthening, age/precipitation hardening, dispersion strengthening, grain size reduction, strengthening from cold work, and strengthening from interfaces. It explains the application of predictive models in the atomistic modeling of dislocation structures...
Abstract
A computational tool would require the contribution of the strengthening mechanisms of metallic material to be predicted and then summed in an appropriate way to derive an estimate of the tensile properties. This article focuses on the modeling of deformation mechanisms pertinent to structural materials, namely, solid-solution strengthening, age/precipitation hardening, dispersion strengthening, grain size reduction, strengthening from cold work, and strengthening from interfaces. It explains the application of predictive models in the atomistic modeling of dislocation structures and cast aluminum property prediction. The article concludes with information on the use of rules-based approaches and data-mining techniques for quantitative predictions of tensile properties.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003149
EISBN: 978-1-62708-199-3
... instances for unalloyed zirconium. Cold Work and Recrystallization The degree to which unalloyed zirconium can be cold worked depends both on metal purity and on the method of reduction. Zirconium work hardens rapidly, reaching maximum hardness and strength after cold reduction of only about 20...
Abstract
This article discusses the general characteristics, primary and secondary fabrication methods, product forms, and corrosion resistance of zirconium and hafnium. It describes the physical metallurgy of zirconium and its alloys, providing details on allotropic transformation and anisotropy that profoundly influences the engineering properties of zirconium and its alloys. Tables listing the values for chemical composition and tensile properties for nuclear and nonnuclear grades of zirconium are also provided.
1