Skip Nav Destination
Close Modal
Search Results for
cold heading
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 739 Search Results for
cold heading
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004004
EISBN: 978-1-62708-185-6
... Abstract Cold heading is typically a high-speed process where a blank is progressively moved through a multi-station machine. This article discusses various cold heading process parameters, such as upset length ratio, upset diameter ratio, upset strain, and process sequence design. It describes...
Abstract
Cold heading is typically a high-speed process where a blank is progressively moved through a multi-station machine. This article discusses various cold heading process parameters, such as upset length ratio, upset diameter ratio, upset strain, and process sequence design. It describes the various components of a cold-heading machine and the tools used in the cold heading process. These include headers, transfer headers, bolt makers, nut formers, and parts formers. The article explains the operations required for preparing stock for cold heading, including heat treating, drawing to size, machining, descaling, cutting to length, and lubricating. It lists the advantages of the cold heading over machining. Materials selection criteria for dies and punches in cold heading are also described. The article provides examples that demonstrate tolerance capabilities and show dimensional variations obtained in production runs of specific cold-headed products. It concludes with a discussion on the applications of warm heading.
Image
Published: 01 December 1998
Image
Published: 01 January 1989
Fig. 20 Bore of die for cold heading the rivet shown at the left is typical of small bores finished by manual-stroke honing. Dimensions given in inches
More
Image
Published: 01 January 2005
Fig. 1 Schematics of the cold heading of an unsupported bar in a horizontal machine. (a) Head formed between punch and die. (b) Head formed in punch. (c) Head formed in die. (d) Head formed in punch and die
More
Image
Published: 01 January 2005
Image
Published: 01 January 2005
Image
Published: 01 January 2005
Fig. 28 Combined extrusion and cold heading used to reduce production costs for a 1018 steel lawnmower wheel. A turning operation was eliminated by cold extruding the diameter to be roll threaded. Dimensions given in inches
More
Image
Published: 01 January 2005
Fig. 18 Process sequence used to cold head an M6 eyebolt. Process proceeds from right to left and consists of wire cutoff, forward extrusion, heading/forward extrusion, blank rotation, upsetting/flattening, and piercing. Courtesy of J. Bupp, National Machinery Co.
More
Image
Published: 01 January 2005
Fig. 24 Typical tolerances for cold formed parts. (a) Head produced by open heading. (b) Head produced by partial containment in the die. Source: Ref 144
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003976
EISBN: 978-1-62708-185-6
.... Recommendations on the selection of the materials for hot forging, hot extrusion, cold heading, and cold extrusion are presented. The article discusses the methods of characterizing abrasive wear and factors affecting abrasive wear. It discusses various die coatings and surface treatments used to extend the lives...
Abstract
This article describes die wear and failure mechanisms, including thermal fatigue, abrasive wear, and plastic deformation. It summarizes the important attributes required for dies and the properties of the various die materials that make them suitable for particular applications. Recommendations on the selection of the materials for hot forging, hot extrusion, cold heading, and cold extrusion are presented. The article discusses the methods of characterizing abrasive wear and factors affecting abrasive wear. It discusses various die coatings and surface treatments used to extend the lives of dies: alloying surface treatments, micropeening, and electroplating.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001016
EISBN: 978-1-62708-161-0
... Abstract Wire rod is a semifinished product rolled from billet on a rod mill and is used primarily for the manufacture of wire. Steel wire rod is usually cold drawn into wire suitable for further drawing; for cold rolling, cold heading, cold upsetting, cold extrusion, or cold forging...
Abstract
Wire rod is a semifinished product rolled from billet on a rod mill and is used primarily for the manufacture of wire. Steel wire rod is usually cold drawn into wire suitable for further drawing; for cold rolling, cold heading, cold upsetting, cold extrusion, or cold forging; or for hot forging. The article explains these operations, along with the several recognized quality and commodity classifications applicable to steel wire rods. The heat treatments commonly applied to steel wire rod, either before or during processing into wire, include annealing, spheroidize annealing, patenting, and controlled cooling. When the end product must be heat treated, the heat treatment and mechanical properties should be clearly defined. Carbon steel rods are produced in various grades or compositions: low-carbon, medium-low-carbon, medium-high-carbon, and high-carbon steel wire rods. Rod for the manufacture of carbon steel wire is produced with manufacturing controls and inspection procedures intended to ensure the degree of soundness and freedom from injurious surface imperfections necessary for specific applications. This article also describes the various quality descriptors applicable to the rods as well as standard qualities and commodities available in alloy steel wire rod.
Image
Published: 01 January 2005
Fig. 14 1018 steel adjusting-screw blank formed by forward extruding and severe cold heading. Dimensions given in inches
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004005
EISBN: 978-1-62708-185-6
... process, it is typically preceded or followed by processes of cold heading and heat treatments, which require defect-free surfaces. The steel manufacturer often certifies steels meeting the cold extrusion requirements as “cold extrusion quality” or “cold working quality.” To ensure surface quality...
Abstract
Cold extrusion is a push-through compressive forming process with the starting material (billet/slug) at room temperature. This article provides information on the different types of steels that can be cold extruded. Mechanical presses and hydraulic presses that are specifically designed for cold extrusion with high rigidity, accurate alignment, and long working strokes are described. The article details the factors that are critical in cold extrusion: punch design, die design, and tool design. It summarizes the role of lubricants during extrusion of steel, such as soap lubricant and polymer lubricants. The article describes several procedures for extruding specific steel parts such as tubular parts and stepped shafts. It lists problems such as tool breakage and galling or scoring of tools and explains cold extrusion of aluminum, copper, and nickel alloy parts. The article also discusses the impact extrusion of magnesium alloys.
Image
Published: 01 January 2005
Fig. 20 Copper alloy C10200 nozzle component blank that was originally machined but was switched to cold heading to save the work metal indicated by the shaded regions. Dimensions given in inches
More
Image
Published: 01 December 2008
Fig. 15 Insufficient pressure from a static head of molten aluminum caused cold shuts and misruns that resulted in rejection of all investment castings of the above design. By centrifuge casting in a close-tolerance dry sand mold, rejections were reduced to an acceptable level.
More
Image
Published: 30 November 2018
Fig. 12 Gas tungsten arc robotic welding head with cold wire-feed device. Courtesy of Lincoln Electric Company
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003116
EISBN: 978-1-62708-199-3
... performed on most stainless steels include cold heading, cold drawing, cold extrusion, and cold riveting. Cold working of stainless steel is more difficult than cold working of carbon steel because of differences in strength and work hardening, and power requirements are proportionately greater. Cold...
Abstract
Fabrication of wrought stainless steels requires use of greater power, more frequent repair or replacement of processing equipment, and application of procedures to minimize or correct surface contamination because of its greater strength, hardness, ductility, work hardenability and corrosion resistance. This article provides a detailed account of such difficulties encountered in the fabrication of wrought stainless steel by forming, forging, cold working, machining, heat treating, and joining processes. Stainless steels are subjected to various heat treatments such as annealing, hardening, and stress relieving. Stainless steels are commonly joined by welding, brazing, and soldering. The article lists the procedures and precautions that should be instituted during welding to ensure optimum corrosion resistance and mechanical properties in the completed assembly.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006526
EISBN: 978-1-62708-207-5
... cost of tools and equipment. It is often combined with cold forging (e.g., cold heading) for mass production of near-net and net-shape parts, such as bolts, nuts, rivets, and many automotive and appliance components. Cold extrusion and cold heading are often combined to produce hardware items...
Abstract
Aluminum products such as fasteners and automotive components are often produced by cold extrusion because it facilitates high volume production of near-net-shape parts. This article describes the cold extrusion process for aluminum alloys and the associated requirements for tooling, dies, punches, and other equipment. It covers typical tool materials and their working properties, and provides best practices for sizing aluminum slugs and preparing them for use. The article also discusses the wide range of achievable shapes from shallow cup-like extrusions to deep cups and complex parts with longitudinal flutes, stems, and grooves.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003183
EISBN: 978-1-62708-199-3
..., precision forging, and cold forging. computer-aided design die design forging processes materials selection types of hammers types of presses Hammers and Presses for Forging FORGING MACHINES fall into three categories according to their method of operation. Mechanical forging presses...
Abstract
Forging machines use a wide variety of hammers, presses, and dies to produce products with the desired shape, size, and geometry. This article discusses the major types of hammers (gravity-drop, power-drop, high speed, and open-die forging), and presses (mechanical, hydraulic, screw-type, and multiple-ram). It further discusses the technologies used in the design of dies, terminology, and materials selection for dies for the most common hot-forging processes, particularly those using vertical presses, hammers, and horizontal forging machines. A brief section is included on computer-aided design in the forging industry. Additionally, the article reviews specific characteristics, process limitations, advantages, and disadvantages of the most common forging processes, namely hot upset forging, roll forging, radial forging, rotary forging, isothermal and hot-die forging, precision forging, and cold forging.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003095
EISBN: 978-1-62708-199-3
... inspection standards. Cold-Heading Quality, Cold-Extrusion Quality B, Cold-Upsetting Quality, and Cold-Expansion Quality Cold-heading quality, cold-extrusion quality B, cold-upsetting quality, and cold-expansion quality apply to cold-finished carbon steel bars used in production of solid or hollow...
Abstract
Hot-rolled steel bars and other hot rolled steel shapes are produced from ingots, blooms, or billets converted from ingots, or from strand cast blooms and billets, and comprise a variety of sizes and cross sections. This article provides a brief discussion on mechanical properties, quality descriptors and chemical compositions of hot-rolled steel bars, cold-finished steel bars, steel wire rod and steel wire. It contains tables that provide size tolerances for cold-finished carbon steel bar and cold-finished alloy steel bar.
1