Skip Nav Destination
Close Modal
By
Rajiv Shivpuri, Satish Kini
By
Chester J. Van Tyne, John Walters
By
H. Tahira, K. Funatani
Search Results for
cold forging
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 937
Search Results for cold forging
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Ball bearing outer race that was cold forged from sintered powder preform o...
Available to PurchasePublished: 01 January 2005
Fig. 30 Ball bearing outer race that was cold forged from sintered powder preform of 4620 lowalloy steel
More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006424
EISBN: 978-1-62708-192-4
... Abstract Both hot and cold forgings are batch-type processes in which steady-state conditions are never fully achieved and the initial lubricant supply must perform adequately for the duration of the operation. This article discusses methods to measure lubricant effectiveness and wear...
Abstract
Both hot and cold forgings are batch-type processes in which steady-state conditions are never fully achieved and the initial lubricant supply must perform adequately for the duration of the operation. This article discusses methods to measure lubricant effectiveness and wear. It describes the mixed-film lubrication and solid film lubrication in cold forging, as well as solid film lubrication and thick film lubrication in hot forging. The article reviews the factors affecting abrasive wear: die hardness, workpiece temperature, and lubrication and die temperature. It concludes with information on ways to improve resistance to abrasive wear.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003980
EISBN: 978-1-62708-185-6
... Abstract This article discusses the operation of upset forging machines and selection of the machine size. It describes several types of upsetter heading tools and their materials. The article reviews the cold shearing and hot shearing methods for preparing blanks for hot upset forging...
Abstract
This article discusses the operation of upset forging machines and selection of the machine size. It describes several types of upsetter heading tools and their materials. The article reviews the cold shearing and hot shearing methods for preparing blanks for hot upset forging. It deals with various upsetting processes: offset upsetting, double-end upsetting, upsetting with sliding dies, upsetting pipe and tubing, and electric upsetting. The article also provides information on hot forging and cold forging.
Book Chapter
Lubricants and Their Applications in Forging
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004032
EISBN: 978-1-62708-185-6
... Abstract This article lists functions of lubricants common to the majority of applications and processes. It discusses the lubricant candidates widely used in forging: conversion coatings with soaps (stearate compounds) and molybdenum disulfide for cold forging; oil-based thick, film oil...
Abstract
This article lists functions of lubricants common to the majority of applications and processes. It discusses the lubricant candidates widely used in forging: conversion coatings with soaps (stearate compounds) and molybdenum disulfide for cold forging; oil-based thick, film oil or polymerbased lubricants and molybdenum disulfide for warm application; graphite suspensions in oil or water for hot forging steels; and glass films for titanium and superalloys hot forgings. The article describes the applications of lubricants in warm extrusion and forging, hot forging of steel, hot forging of aluminum, isothermal and hot die forging, and the extrusion of steel.
Book Chapter
Forging Machinery, Dies, and Processes
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003183
EISBN: 978-1-62708-199-3
..., precision forging, and cold forging. computer-aided design die design forging processes materials selection types of hammers types of presses Hammers and Presses for Forging FORGING MACHINES fall into three categories according to their method of operation. Mechanical forging presses...
Abstract
Forging machines use a wide variety of hammers, presses, and dies to produce products with the desired shape, size, and geometry. This article discusses the major types of hammers (gravity-drop, power-drop, high speed, and open-die forging), and presses (mechanical, hydraulic, screw-type, and multiple-ram). It further discusses the technologies used in the design of dies, terminology, and materials selection for dies for the most common hot-forging processes, particularly those using vertical presses, hammers, and horizontal forging machines. A brief section is included on computer-aided design in the forging industry. Additionally, the article reviews specific characteristics, process limitations, advantages, and disadvantages of the most common forging processes, namely hot upset forging, roll forging, radial forging, rotary forging, isothermal and hot-die forging, precision forging, and cold forging.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001016
EISBN: 978-1-62708-161-0
... Abstract Wire rod is a semifinished product rolled from billet on a rod mill and is used primarily for the manufacture of wire. Steel wire rod is usually cold drawn into wire suitable for further drawing; for cold rolling, cold heading, cold upsetting, cold extrusion, or cold forging...
Abstract
Wire rod is a semifinished product rolled from billet on a rod mill and is used primarily for the manufacture of wire. Steel wire rod is usually cold drawn into wire suitable for further drawing; for cold rolling, cold heading, cold upsetting, cold extrusion, or cold forging; or for hot forging. The article explains these operations, along with the several recognized quality and commodity classifications applicable to steel wire rods. The heat treatments commonly applied to steel wire rod, either before or during processing into wire, include annealing, spheroidize annealing, patenting, and controlled cooling. When the end product must be heat treated, the heat treatment and mechanical properties should be clearly defined. Carbon steel rods are produced in various grades or compositions: low-carbon, medium-low-carbon, medium-high-carbon, and high-carbon steel wire rods. Rod for the manufacture of carbon steel wire is produced with manufacturing controls and inspection procedures intended to ensure the degree of soundness and freedom from injurious surface imperfections necessary for specific applications. This article also describes the various quality descriptors applicable to the rods as well as standard qualities and commodities available in alloy steel wire rod.
Image
Relationship between crack width and stroke in truncated-cone indentation t...
Available to PurchasePublished: 01 January 2005
Fig. 29 Relationship between crack width and stroke in truncated-cone indentation test for workability of various steels at cold forging temperatures. Source: Ref 58
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004004
EISBN: 978-1-62708-185-6
... and inspection to ensure satisfactory performance in cold-heading and cold-forging operations. Of the chromium-nickel group, types 305 and 302Cu are used for cold-heading wire and generally are necessary for severe upsetting. Other grades commonly cold formed include 304, 316, 321, 347, and 384. Of the 4...
Abstract
Cold heading is typically a high-speed process where a blank is progressively moved through a multi-station machine. This article discusses various cold heading process parameters, such as upset length ratio, upset diameter ratio, upset strain, and process sequence design. It describes the various components of a cold-heading machine and the tools used in the cold heading process. These include headers, transfer headers, bolt makers, nut formers, and parts formers. The article explains the operations required for preparing stock for cold heading, including heat treating, drawing to size, machining, descaling, cutting to length, and lubricating. It lists the advantages of the cold heading over machining. Materials selection criteria for dies and punches in cold heading are also described. The article provides examples that demonstrate tolerance capabilities and show dimensional variations obtained in production runs of specific cold-headed products. It concludes with a discussion on the applications of warm heading.
Book Chapter
Rotary Forging
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003990
EISBN: 978-1-62708-185-6
... Abstract Radial forging is a hot- or cold-forming process that uses two or more radially moving anvils or dies to produce solid or tubular components with constant or varying cross sections along their lengths. This article focuses on the workpiece configuration, workpiece materials, machines...
Abstract
Radial forging is a hot- or cold-forming process that uses two or more radially moving anvils or dies to produce solid or tubular components with constant or varying cross sections along their lengths. This article focuses on the workpiece configuration, workpiece materials, machines, dies, advantages, and limitations of radial forging. It concludes with a discussion on the applications of radial forging.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003972
EISBN: 978-1-62708-185-6
.... Note that cold working, represented by the “Cold draw” and “Cold extrude” lines, have lower roughness and tighter tolerance values than hot-worked material, represented by the “Hot roll, extrude, forge” line. Cold-worked material also has better finish and tolerance than the various casting processes...
Abstract
This article reviews the general aspects of product design and provides an overview of the manufacturing processes and their relationship to design, with an emphasis on deformation processes. It discusses the various classes of deformation processes to illustrate their impacts on product design while taking advantage of the benefits of deformation processing.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009005
EISBN: 978-1-62708-185-6
... workability tests and illustrates their application in practical forging situations. Workability tests for open-die forging of cast structures, hot and cold open-die forging of recrystallized structures, fracture-controlled defect formation, establishing effects of process variables and secondary tensile...
Abstract
Workability in forging depends on a variety of material, process-variable, and die-design features. A number of test techniques have been developed for gaging forgeability depending on alloy type, microstructure, die geometry, and process variables. This article summarizes some common workability tests and illustrates their application in practical forging situations. Workability tests for open-die forging of cast structures, hot and cold open-die forging of recrystallized structures, fracture-controlled defect formation, establishing effects of process variables and secondary tensile stresses on forgeability, and flow-localization-controlled failure are some common tests. The workability test used for closed-die forging is also summarized.
Image
Temperature-time schedule for producing direct-cooled forgings and cold-fin...
Available to Purchase
in Microstructures, Processing, and Properties of Steels[1]
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Image
Through-thickness residual-stress magnitudes in cold-water-quenched forged ...
Available to PurchasePublished: 01 June 2016
Fig. 6 Through-thickness residual-stress magnitudes in cold-water-quenched forged block ( x = 300 mm, or 12 in.; y = 215 mm, or 8.5 in.; z = 215 mm, or 8.5 in.), measured from central vertex out toward surface
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003986
EISBN: 978-1-62708-185-6
... method for preparing billets for precision forging. Cold-drawn, turned, or ground bar should be used to achieve much better diameter control. Sawing is also preferred to shearing for billet separation. However, recent developments in shearing machines that monitor bar diameter and continuously adjust...
Abstract
Precision forging is defined as a closed-die forging process in which the accuracy of the shape, dimensional tolerances, and surface finish exceed normal expectations to the extent that some of the postforge operations can be eliminated. This article provides an overview of the key factors that impact the precision forging process. It provides information on the achievable tolerances and presents examples of precision forging. A discussion on forging of bevel gears/spiral bevel gears is also presented.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003984
EISBN: 978-1-62708-185-6
... or a cold-working operation. Primary metals producers use hot-work radial forging to produce billet or bar. Starting stock can be ingots or cogs from ingots that have been forged to an intermediate size with an open-die forging operation. (See the article “Practical Aspects of Converting Ingot to Billet...
Abstract
Radial forging is a process performed with four dies arranged in one plane that can act on a piece simultaneously. This article explains the types of radial forgings and describes the advantages and disadvantages of radial forging over open-die cogging/forging. The article discusses the parameters involved in product shape control. It also provides examples that illustrate the versatility and capabilities of the radial forge machine.
Book Chapter
Warm and Hot Working Applications
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005884
EISBN: 978-1-62708-167-2
... the characteristics and processing considerations of each metal. It discusses forging because it is a versatile metalworking process and performed at cold, warm, and hot working temperatures. The article also presents the applications of steels, stainless steels, aluminum alloys, titanium alloys, superalloys...
Abstract
The warm and hot working of metals provide the ability to shape important materials into component shapes that are useful in a variety of applications requiring strength, toughness, and ductility. This article focuses on a variety of metals that can be hot or warm worked, and describes the characteristics and processing considerations of each metal. It discusses forging because it is a versatile metalworking process and performed at cold, warm, and hot working temperatures. The article also presents the applications of steels, stainless steels, aluminum alloys, titanium alloys, superalloys, and copper alloys.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002485
EISBN: 978-1-62708-194-8
.... For example, a screw-machined part has been first cast, hot rolled to bar stock, and possibly cold rolled or drawn prior to screw machining. A forging may have been cast, hot rolled to bar form, cropped into a billet, forged through multiple stations, and then finish machined. There are steps needed...
Abstract
This article introduces the reasons behind the selection of a deformation process as the method of choice for producing a part or product form. It discusses the advantages, disadvantages, and categories of deformation processes. The article describes the major design considerations in applying a deformation process. Some fundamental aspects of plastic flow, flow stress, cold and hot working, workability, and formability are presented. The article provides information on free-surface cracking, central burst or chevron cracking, and cracking on die contact surface, as well as the microstructural effects on metal flow. It also discusses the defects in sheet-metal formed parts and flow-related defects in bulk forming.
Book Chapter
Forge and Direct Heat Treatment Processes and Technologies
Available to PurchaseSeries: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005994
EISBN: 978-1-62708-168-9
... rolling mills to produce various DHT steels for machining and cold forming applications. carbon content connecting rods crankshafts direct-forge quenching forging heat treatment microalloyed steel THE PURPOSE of this article is to discuss the state of the art in forging and direct heat...
Abstract
This article provides general information on the definition, purposes, and quench equipment for direct-forge quenching (DFQ) and direct heat treatment (DHT) processes that are widely used in automotive and various other mechanical industries. It discusses the technological advances in these processes and their ability to produce high-quality components at low production cost from microalloyed steels. Further, the article describes the influence of carbon contents on toughness of microalloyed direct heat treated steels. It focuses on the DFQ and DHT steel technologies applied in continuous rolling mills to produce various DHT steels for machining and cold forming applications.
Book Chapter
Failures Related to Metalworking
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
.... The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts. anisotropy blisters centerline shrinkage chemical segregation cold...
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003996
EISBN: 978-1-62708-185-6
..., usually at an angle to the other die, leading to the incremental deformation of the workpiece between the moving and stationary die. Orbital forging is used to produce parts with surfaces of revolution (such as impellers and discs) with both hot and cold forging processes for aluminum alloys. Orbital...
Abstract
This article begins with discussion on forgeability and the factors affecting the forgeability of aluminum and aluminum alloys. It describes the types of forging methods and equipment and reviews critical elements in the overall aluminum forging process: die materials, die design, and die manufacture. The article discusses the critical aspects of various manufacturing elements of aluminum alloy forging, including the preparation of the forging stock, preheating stock, die heating, lubrication, trimming, forming and repair, cleaning, heat treatment, and inspection. It concludes with a discussion on the forging of advanced aluminum materials and aluminum alloy precision forgings.
1