Skip Nav Destination
Close Modal
Search Results for
cobalt-chromium alloy implants
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 176 Search Results for
cobalt-chromium alloy implants
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005669
EISBN: 978-1-62708-198-6
... Abstract This article reviews the concepts considered important for an understanding of the processes used for preparing cobalt-chromium alloy implants, the microstructures resulting from this processing, and the resulting material properties. The review includes solidification of alloys...
Abstract
This article reviews the concepts considered important for an understanding of the processes used for preparing cobalt-chromium alloy implants, the microstructures resulting from this processing, and the resulting material properties. The review includes solidification of alloys, diffusionless (martensitic) phase transformation as occurs with face-centered cubic to hexagonal close-packed transformation in cobalt-chromium alloys, and stacking faults and twins and their role in this transformation. It also discusses the strengthening mechanisms that are responsible for the mechanical properties of cast and wrought cobalt alloys. The article contains tables that list the commonly used cobalt alloys and their biomedical applications and chemical compositions. It discusses the mechanical and corrosion properties of cobalt alloys, and provides a description of the microstructure of cobalt alloys.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003168
EISBN: 978-1-62708-199-3
... (articulating portion of the femoral component) is made either of highly polished cobalt-chromium alloys or of ceramic. Modular designs where the stem and ball are of two different materials are common. Similarly, the polymeric socket of the common acetabulum replacement can be implanted directly in the pelvis...
Abstract
Biomaterials are the man-made metallic, ceramic, and polymeric materials used for intracorporeal applications in the human body. This article primarily focuses on metallic materials. It provides information on basic metallurgy, biocompatibility, chemistry, and the orthopedic and dental applications of metallic biomaterials. A table compares the mechanical properties of some common implant materials with those of bone. The article also provides information on coatings, ceramics, polymers, composites, cements, and adhesives, especially where they interact with metallic materials.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005665
EISBN: 978-1-62708-198-6
... stress and abrasions, as required for joint implants. Chromium and cobalt are well known to be resistant to corrosion. They are often used as adjuvants in casting alloys to modify the original metal corrosion properties or as cobalt-chromium alloys when highly corrosion-resistant materials...
Abstract
This article describes the corrosion resistance and ion release from main transition metallic bearings used as medical devices. It discusses the main issues associated with the in vivo presence of ions and their biocompatibility during the exposure of patients to different aspects of ion toxicity. These include ion concentration and accumulation in organisms, reactive oxygen species and oxidative stress, and carcinogenicity stimulated by the corrosion process and toxic ions release.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006889
EISBN: 978-1-62708-392-8
... implants. Under the name Stellite, given by Kennametal Inc., the name encompasses a wide range of cobalt (Co) and chromium (Cr) alloys that contain tungsten, molybdenum, and a small amount of carbon. The small amount of carbon is essential for carbide formation, which only aids in the improved...
Abstract
This article discusses some of the additive manufacturing (AM) based fabrication of alloys and their respective mechanical, electrochemical, and in vivo performance. Firstly, it briefly discusses the three AM techniques that are most commonly used in the fabrication of metallic biomedical-based devices: binder jetting, powder-bed fusion, and directed-energy deposition. The article then characterizes the electrochemical properties of additive-manufactured/processed cobalt-chromium alloys. This is followed by sections providing an evaluation of the biological response to CoCr alloys in terms of the material and 3D printing fabrication. Discussion on the biological response as a function of direct cellular activity on the surface of CoCr alloys in static conditions (in vitro), in dynamic physiological conditions (in vivo), and in computer-simulated conditions (in silico) are further discussed in detail. Finally, the article provides information on the qualification and certification of AM-processed medical devices.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005335
EISBN: 978-1-62708-187-0
... coatings continuous casting gas turbines heat treatment hot isostatic pressing microstructure orthopedic implants phases physical metallurgy crystallography foundry methods argon-oxygen decarburization cobalt alloy castings wear-resistant alloys corrosion-resistant alloys COBALT-BASE...
Abstract
This article discusses the physical metallurgy of cast cobalt alloys with an emphasis on the crystallography, compositions, phases and microstructure, and properties. Cobalt alloys are cast by several different foundry methods. The article describes the argon-oxygen decarburization and continuous casting process. It provides information on castability and quality of the casted alloys. The article details the postcasting treatment, including heat treatment, hot isostatic pressing, and coatings. It summarizes the applications of cast cobalt alloys.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004205
EISBN: 978-1-62708-184-9
... preoperative metal sensitivity to at least one component of a commonly used cobalt-chromium alloy (UNS R30075, Ref 19 ) in 26% of 92 patients before surgery to implant a total knee replacement. Five of the patients developed eczema at the surgical site or extending over the whole body. Two of those patients...
Abstract
In the field of medical device development and testing, the corrosion of metallic parts can lead to significant adverse effects on the biocompatibility of the device. This article describes the mechanisms of metal and alloy biocompatibility. It reviews the response of implant metals and particulate materials to corrosion. The effect of metal ions from an implanted device on the human body is also discussed. The article concludes with information on the possible cancer-causing effects of metallic biomaterials.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005652
EISBN: 978-1-62708-198-6
...-15 Tungsten-10 Nickel Alloy for Surgical Implant Applications (UNS R30605) ,” F 90, Annual Book of ASTM Standards , ASTM International 21. “Standard Specification for Cobalt-28 Chromium-6 Molybdenum Casting Alloy and Cast Products for Surgical Implants (UNS R30075),” F 75, Annual Book...
Abstract
This article discusses the mechanisms of metal and alloy biocompatibility. It provides information on early testing and experience with metals in medical device applications. The article describes the response of implant and particulate materials to severe corrosion. It provides a description of metal binding and its effects on metabolic processes. Hypersensitive responses to metal ions are also reviewed. The article concludes with a discussion on the possible cancer-causing effects of metallic biomaterials.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003148
EISBN: 978-1-62708-199-3
... in applications that utilize its magnetic properties, corrosion resistance, wear resistance, and/or its strength at elevated temperatures. Some cobalt-base alloys are also biocompatible, which has prompted their use as orthopedic implants. Mining and Processing Much of cobalt today derives from copper...
Abstract
Cobalt finds its use in various applications owing to its magnetic properties, corrosion resistance, wear resistance, and its strength at elevated temperatures. This article discusses the mining and processing of cobalt and cobalt alloys. It describes the types of cobalt alloys, including wear-resistant alloys, high-temperature alloys, corrosion-resistant alloys, and special-purpose alloys. The article provides data on the chemical composition, mechanical properties, and physical properties of these alloys. Further, it provides information on the uses of cobalt in superalloys, cemented carbides, magnetic materials, low-expansion alloys, and high-speed tool steels.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005666
EISBN: 978-1-62708-198-6
... of chromium-iron compound aggregates ranging in size from 0.5 to 5.0 μm that are produced by corrosion of screw–plate junctions ( Ref 28 ). Cobalt Alloy Corrosion of cobalt alloy implant components produces a chromium-phosphate (Cr(PO 4 )4H 2 O) hydrate-rich material termed orthophosphate, which ranges...
Abstract
Implant debris is known to cause local inflammation, local osteolysis, and, in some cases, local and systemic hypersensitivity. The debris can be stainless steel, cobalt alloy, and titanium alloy, and soluble debris obtained due to wear from all orthopedic implants. This article addresses the biologic aspects of implant debris, both locally and systemically. It describes debris-induced local effects, particle-induced proinflammatory responses, and debris-induced systemic effects. The article concludes with a discussion on the four systemic effects of implant debris, namely, neuropathic effects, hypersensitivity effects, carcinogenicity, and general toxicity.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004207
EISBN: 978-1-62708-184-9
... dissolution of the inclusions ( Ref 5 ). Another requirement for stainless steel is a fine grain microstructure that is crucial for strength and fatigue properties. Cobalt-Base Alloys Cobalt-base alloys come in a variety of compositions that can include cobalt, chromium, molybdenum, nickel, tungsten...
Abstract
This article tabulates the chemical composition of iron-base, titanium-base, and cobalt-base alloys and illustrates the microstructures of these materials. It discusses the surface morphology and chemistry of oxide-film-covered alloys and provides insights into the interaction. The article illustrates the interfacial structure of a biomaterial surface contacting with the biological environment. It describes the corrosion behavior of stainless steel, cobalt-base alloy, and titanium alloys. The electrochemical methods used for studying metallic biomaterials corrosion are also discussed. The article concludes with information on the biological consequences of in vivo corrosion and biocompatibility.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003220
EISBN: 978-1-62708-199-3
.../cobalt materials, and alloys of titanium, Polymers Ion implant can mimic "normal" alloys; nickel, cobalt, aluminum, and chromium, al- Cr, Ta, Cr+P amorphous and unique surface alloys though applications are restricted to temperatures Glasses, electrooptics possible below 250 °C (480 °F) for steels...
Abstract
Although stainless steel is naturally passivated by exposure to air and other oxidizers, additional surface treatments are needed to prevent corrosion. Passivation, pickling, electropolishing, and mechanical cleaning are important surface treatments for the successful performance of stainless steel. This article describes the surface treatment of stainless steels including abrasive blast cleaning, acid pickling, salt bath descaling, passivation treatments, electropolishing, and the necessary coating processes involved. It also describes the surface treatment of heat-resistant alloys including metallic contaminant removal, tarnish removal, oxide and scale removal, finishing, and coating processes.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003219
EISBN: 978-1-62708-199-3
... high capital and operating costs. Applications Ion implantation is commercially applied to various steels, tungsten carbide/cobalt materials, and alloys of titanium, nickel, cobalt, aluminum, and chromium, although applications are restricted to temperatures below 250 °C (480 °F) for steels...
Abstract
Physical vapor deposition (PVD) coatings are harder than any metal and are used in applications that cannot tolerate even microscopic wear losses. This article describes the three most common PVD processes: thermal evaporation, sputtering, and ion plating. It also discusses ion implantation in the context of research and development applications.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004206
EISBN: 978-1-62708-184-9
... of cobalt, nickel, and iron have been used. More recently, the use of titanium has increased dramatically in dental applications such as dental implants. Metal alloys have been used in orthopedic applications in greatest amounts related to fracture fixation devices and total joint arthroplasties. Alloys...
Abstract
This article reviews the understanding of corrosion interactions between alloys in complex geometries and in applications where there are significant cyclic stresses and potential for wear and fretting motion. These alloys include iron-base, titanium-base, and cobalt-base alloys. The article discusses the surface characteristics and electrochemical behavior of metallic biomaterials. It summaries the clinical context for mechanically assisted corrosion and describes mechanically assisted crevice corrosion. There have been several tests developed to investigate aspects of mechanically assisted corrosion. The article also explains the scratch test and the in vitro fretting corrosion test.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005653
EISBN: 978-1-62708-198-6
... fields. Much early work in metallic biomaterials was performed in the dental community where gold alloys, dental amalgams, and base metal alloys of cobalt, nickel, and iron have been used. More recently, the use of titanium has increased dramatically in dental applications such as dental implants. Metal...
Abstract
This article reviews the corrosion interactions between biomedical alloys, in particular iron-base, titanium-base, and cobalt-base alloys, in complex geometries and in applications where there are significant cyclic stresses and potential for wear and fretting motion. It discusses the nature of these metal surfaces and their propensity for corrosion reactions when combined with similar or different alloys in complex restrictive environments within the human body and under loading conditions. The article describes the factors that influence mechanically assisted crevice corrosion. It reviews the tests developed to investigate the aspects of mechanically assisted corrosion of metallic biomaterials: the scratch test and the in vitro fretting corrosion test.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004209
EISBN: 978-1-62708-184-9
... is present in amounts up to 0.3 to 0.4% with the partial denture alloys. Carbon is not added to alloys to be used for porcelain bonding. Alloys that have found applications for support structures implanted in the lower or upper jaws are composed of cobalt-chromium, nickel-chromium, stainless steel...
Abstract
This article describes dental alloy compositions and its properties. It discusses the safety and efficacy considerations of dental alloy devices. The article defines and compares interstitial fluid and oral fluid environments. Artificial solutions developed for the testing and evaluation of dental materials are summarized. The article examines the effects of restoration contact on electrochemical parameters and reviews the concentration cells developed by dental alloy-environment electrochemical reactions. The composition and characterization of biofilms, corrosion products, and other debris that deposit on dental material surfaces are discussed. The article evaluates the types of alloys available for dental applications, including direct filling alloys, crown and bridge alloys, partial denture alloys, porcelain fused to metal alloys, wrought wire alloys, soldering alloys, and implant alloys. The effects of composition and microstructure on the corrosion of each alloy group are also discussed. The article concludes with information on the tarnishing and corrosion behavior of these alloys.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001819
EISBN: 978-1-62708-180-1
... implant materials: Stainless steel: ASTM F 55-82, ASTM F 56-82, ASTM F 138-82, ASTM F 139-82 (contains remelted Special Quality), ISO/DIS 5832/1 (1986) Unalloyed titanium: ASTM F 67-83, ISO 5832/II (1984) Titanium alloy Ti-6Al-4V ELI: ASTM F 136-79, ISO 5832/III (1978) Cast cobalt...
Abstract
This article commences with a description of the prosthetic devices and implants used for internal fixation. It describes the complications related to implants and provides a list of major standards for orthopedic implant materials. The article illustrates the body environment and its interactions with implants. The considerations for designing internal fixation devices are also described. The article analyzes failed internal fixation devices by explaining the failures of implants and prosthetic devices due to implant deficiencies, mechanical or biomechanical conditions, and degradation. Finally, the article discusses the fatigue properties of implant materials and the fractures of total hip joint prostheses.
Image
Published: 01 January 2005
, such as titanium alloys (Ti-6Al-4V), cobalt-chromium alloys, or tantalum. Corrosion form and mechanism Mechanically assisted degradation, fatigue, galvanic, crevice corrosion Material Type 316L stainless steel Product form Nail and plate prosthetic device
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003792
EISBN: 978-1-62708-177-1
... alloys, including stainless steels, cobalt-base alloys, titanium and titanium alloys, porous coatings, and emerging materials. biomedical orthopedic alloys cobalt-base alloys implantable surgical devices metallography microstructure porous coatings quality control stainless steels titanium...
Abstract
Metallography plays a significant role in the quality control of metals and alloys used in the manufacture of implantable surgical devices. This article provides information and data on metallographic techniques along with images showing the microstructure of biomedical orthopedic alloys, including stainless steels, cobalt-base alloys, titanium and titanium alloys, porous coatings, and emerging materials.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006267
EISBN: 978-1-62708-169-6
... (such as MP35N) and the Co-Cr-Mo alloys (such as Vitallium) for prosthetic devices and implants on account of their excellent compatibility with body fluids and tissues. Cobalt-chromium-molybdenum alloys still are used for biomedical applications, while the use of MP35N alloy has declined partially due...
Abstract
Cobalt is used as an alloying element in alloys for various applications. This article provides a detailed account of the metallurgy of cobalt-base alloys. It focuses on the compositions, properties, and applications of cobalt-base alloys, which include wear-resistant cobalt alloys, heat-resistant cobalt alloys, and cobalt-base corrosion-resistant alloys. The article also describes the heat treatments such as annealing and aging, for these alloys.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005678
EISBN: 978-1-62708-198-6
... ( Ref 17 ). Stainless steel and the harder cobalt-chromium-molybdenum and titanium alloys appear to be the dominant metals in current metal-on-polymer implants. In some cases, there has been a return to the concept of metal-on-metal prostheses, based on highly polished cobalt-chromium-molybdenum...
Abstract
Total joint replacement in orthopedic surgery can be achieved by excision, interposition, and replacement arthroplasty. This article details the most common materials used in total replacement synovial joints: metals, ceramics, and ultrahigh molecular weight polyethylene (UHMWPE). The principal physical properties and tribological characteristics of these materials are summarized. The article discusses pin-on-disk experiments and pin-on-plate experiments for determining friction and wear characteristics. It explains the use of various types of joint simulators, such as hip joint simulators and knee joint simulators, to evaluate the performance of engineering tribological components in machine simulators. The article concludes with a section on the in vivo assessment of total joint replacement performance.
1