Skip Nav Destination
Close Modal
Search Results for
coarse microstructure
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 203 Search Results for
coarse microstructure
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003191
EISBN: 978-1-62708-199-3
... microstructure Type of graphite Hardness, HB Cutting speed (a) Ultimate tensile strength m/min sfm MPa ksi Gray iron 100% ferrite Flake 100 270 880 108 15.7 Coarse pearlite Flake 195 110 360 241 35 Fine pearlite Flake 225 105 340 310 45 Acicular Flake 263 60 200...
Abstract
An understanding of the influence of microstructure on machinability can provide an insight into more efficient machining and the correct solution to problems. Providing numerous microstructures to depict examples, this article describes the relationship between the microstructure and machinability of cast irons, steels, and aluminum alloys. It presents data on hardness values and the effect of the matrix microstructure of cast iron on tool life. It also explains how a higher inclusion count improves the machinability of steels and why aluminum alloys can be machined at very high speeds.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005415
EISBN: 978-1-62708-196-2
... understanding and predicting fundamental properties of individual defects, as well as applications at the coarse-grained level, where collective behaviors of complex microstructures subject to external conditions are the main concerns. As the length scale increases, the strategies for incorporating changes to...
Abstract
This article discusses the fundamental aspects of phase-field microstructure modeling. It describes the evolution of microstructure modeling, including nucleation, growth, and coarsening. The article reviews two approaches used in the modeling nucleation of microstructure: the Langevin force approach and explicit nucleation algorithm. Calculation of activation energy and critical nucleus configuration is discussed. The article presents the deterministic phase-field kinetic equations for modeling growth and coarsening of microstructure. It also describes the material-specific model inputs, chemical free energy and kinetic coefficients, for phase-field microstructure modeling. The article provides four examples that illustrate some aspects of phase-field modeling.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005459
EISBN: 978-1-62708-196-2
... microstructures may not fully recrystallize by the completion of each deformation. For nickel-base superalloys in particular, dealing appropriately with partially recrystallized structures is of major importance, inasmuch as it is related to the persistence of undesirable (coarse) ALA grains. Thus, it is useful...
Abstract
This article summarizes the general features of microstructure evolution during the thermomechanical processing (TMP) of nickel-base superalloys and the challenges posed by the modeling of such phenomena. It describes the fundamentals and implementations of various modeling methodologies. These include JMAK (Avrami) models, topological models, and mesoscale physics-based models.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005408
EISBN: 978-1-62708-196-2
... are characterized by a coarse dendrite cell structure and a close-to-random texture. The microstructure contains coarse (10 to 50 μm) and inhomogeneously distributed constituent particles of various Al-Mn- and Al-Mn-Fe-Si phases. The sheet ingots are sawn at the ends and scalped to remove surface...
Abstract
This article explores the potential of through-process simulations of the development of microstructure, texture, and resulting properties during the thermomechanical processing of Al-Mn-Mg alloys, starting from the as-cast ingot to final-gage sheet. It provides an introduction of the thermomechanical production of aluminum sheet and, in particular, highlights the main effects governing the evolution of microstructure and texture. The simulation tools used to model the evolution of microchemistry, microstructure, and texture upon deformation and recrystallization of aluminum alloys are described. The article discusses the recrystallization behavior of alloy AA 3104 during the interstand times in between two consecutive hot rolling passes with the help of combined microstructure models.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009002
EISBN: 978-1-62708-185-6
... Abstract This article reviews the general aspects of microstructure evolution during thermomechanical processing. The effect of thermomechanical processing on microstructure evolution is summarized to provide insight into the aspect of process design. The article provides information on hot...
Abstract
This article reviews the general aspects of microstructure evolution during thermomechanical processing. The effect of thermomechanical processing on microstructure evolution is summarized to provide insight into the aspect of process design. The article provides information on hot working and key processes that control microstructure evolution: dynamic recovery, static recovery, recrystallization, and grain growth. Some of the key phenomenological descriptions of plastic flow and microstructure evolution are also summarized. The article concludes with a discussion on the modeling of microstructure evolution.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005406
EISBN: 978-1-62708-196-2
... microstructure. The article describes the principles of the PF method and provides information on the applications of the PF method. The CA model is introduced as a computationally efficient method to predict grain structures in castings using the mesoscopic scale of individual grains. The article discusses the...
Abstract
This article focuses on the intermediate length scales, where transport phenomena govern the spatial and temporal evolution of a structure. It presents the cellular automaton (CA) and phase field (PF) methods that represent the state of the art for modeling macrostructure and microstructure. The article describes the principles of the PF method and provides information on the applications of the PF method. The CA model is introduced as a computationally efficient method to predict grain structures in castings using the mesoscopic scale of individual grains. The article discusses the coupling of the CA to macroscopic calculation of heat, flow, and mass transfers in castings and applications to realistic casting conditions.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005405
EISBN: 978-1-62708-196-2
... initial crack tip as dictated by interaction with microstructure for a coarse-grained Fe-2wt%Si alloy. Source: Ref 20 Fig. 5 (Top) Comparisons of experimentally measured room-temperature da / dN for two different maximum stress levels and predictions using a model based on discrete...
Abstract
The purposes and methods of fatigue modeling and simulation in high-cycle fatigue (HCF) regime are to design either failsafe components or components with a finite life and to quantify remaining life of components with pre-existing cracks using fracture mechanics, with the intent of monitoring via an inspection scheme. This article begins with a discussion on the stages of the fatigue damage process. It describes hierarchical multistage fatigue modeling and several key points regarding the physics of crack nucleation and microstructurally small crack propagation in the HCF regime. The article provides a description of the microstructure-sensitive modeling to model fatigue of several classes of advanced engineering alloys. It describes the various modeling and design processes designed against fatigue crack initiation. The article concludes with a discussion on the challenges in microstructure-sensitive fatigue modeling.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
... Abstract This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution...
Abstract
This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution, and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total number of Burgers correspondence variants and orientation variants. The article also includes calculation of the transformation strain with contributions from defect structures developed at alpha/beta interfaces as a precipitates grow in size. In the CALculation of PHAse Diagram (CALPHAD) framework, the Gibbs free energies and atomic mobilities are established as functions of temperature, pressure, and composition and serve directly as key inputs of any microstructure modeling. The article presents examples of the integrated computation tool set in simulating microstructural evolution.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003090
EISBN: 978-1-62708-199-3
... Abstract The properties of irons and steels are linked to the chemical composition, processing path, and resulting microstructure of the material. For a particular iron and steel composition, most properties depend on microstructure. Processing is a means to develop and control microstructure...
Abstract
The properties of irons and steels are linked to the chemical composition, processing path, and resulting microstructure of the material. For a particular iron and steel composition, most properties depend on microstructure. Processing is a means to develop and control microstructure, for example, hot rolling, quenching, and so forth. This article describes the role of these factors in both theoretical and practical terms, with particular focus on the role of microstructure. It lists the mechanical properties of selected steels in various heat-treated or cold-worked conditions. In steels and cast irons, the microstructural constituents have the names ferrite, pearlite, bainite, martensite, cementite, and austenite. The article presents four examples that have very different microstructures: the structural steel has a ferrite plus pearlite microstructure; the rail steel has a fully pearlitic microstructure; the machine housing has a ferrite plus pearlite matrix with graphite flakes; and the jaw crusher microstructure contains martensite and cementite.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001237
EISBN: 978-1-62708-170-2
... Microstructural analysis requires a deformation- and damage-free sample for correct characterization. A typical preparation procedure includes sectioning, mounting, planar grinding (coarse grinding), sample integrity (rough polishing), polishing, etching, and examination. Ideally a specimen is prepared in such a...
Abstract
Quantitative image analysis has expanded the capabilities of surface analysis significantly with the use of computer technology. This article provides an overview of the quantitative image analysis and optical microscopy. It describes the various steps involved in surface preparation of samples prone to abrasion damage and artifacts for quantitative image analysis.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006684
EISBN: 978-1-62708-213-6
... Murakami’s reagent at ~100 °C (~210 °F). The uniform coloring of delta ferrite is ideal for image analysis phase detection and measurement. The microstructure of annealed SAE 4140 alloy steel consisting mainly of coarse pearlite and proeutectoid ferrite etched with 4% picral and 2% nital is shown in Fig. 8...
Abstract
The reflected light microscope is the most commonly used tool to study the microstructure of metals, composites, ceramics, minerals, and polymers. For the study of the microstructure of metals and alloys, light microscopy is employed in the reflected-light mode using either bright-field illumination, dark-field illumination, polarized light illumination, or differential interference contract, generally by the Nomarski technique. This article concentrates on how to reveal microstructure properly to enable the proper identification of the phases and constituents and, if needed, measuring the amount, size, and spacing of constituents, using the light optical microscope. The discussion covers the examination of microstructures using different illumination methods and includes a comparison between light optical images and scanning electron microscopy images of microstructure.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003246
EISBN: 978-1-62708-199-3
... Abstract This article is a pictorial representation of commonly observed microstructures in iron-base alloys (carbon and alloy steels, cast irons, tool steels, and stainless steels) that occur as a result of variations in chemical analysis and processing. It reviews a wide range of common and...
Abstract
This article is a pictorial representation of commonly observed microstructures in iron-base alloys (carbon and alloy steels, cast irons, tool steels, and stainless steels) that occur as a result of variations in chemical analysis and processing. It reviews a wide range of common and complex mixtures of constituents (single or combination of two phases) that are encountered in iron-base alloys and the complex structure that is observed in these microstructures. The single-phase constituents discussed in the article include austenite, ferrite, delta ferrite, cementite, various alloy carbides, graphite, martensite, and a variety of intermetallic phases, nitrides, and nonmetallic inclusions. The article further describes the two-phase constituents including, tempered martensite, pearlite, and bainite and nonmetallic inclusions in steel that consist of two or more phases.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004019
EISBN: 978-1-62708-185-6
... deformed samples with relatively coarse initial grains, the microstructure near the grain boundaries and the evolution of the microstructure during nucleation can be studied in considerable detail, even when thin-foil specimens parallel to the rolling plane are used for TEM examinations. Figure 17 shows...
Abstract
Recovery, recrystallization, and grain growth are microstructural changes that occur during annealing after cold plastic deformation and/or during hot working of metals. This article reviews the structure of the deformed state and describes the changes in the properties and microstructures of a cold-worked metal during recovery stage. It discusses the recrystallization that occurs by the nucleation and growth of grains. The article also reviews the growth behavior of the grains, explaining that the grain growth can be classified into two types: normal or continuous grain growth and abnormal or discontinuous grain growth. It also examines the key mechanisms that control microstructure evolution during hot working and subsequent heat treatment. These include dynamic recovery, dynamic recrystallization, metadynamic recrystallization, static recovery, static recrystallization, and grain growth.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
... Abstract Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can be...
Abstract
Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can be performed with the scanning electron microscope (SEM) over the same magnification range as the LM, but examination with the latter is more efficient. This article describes the major operations in the preparation of metallographic specimens, namely sectioning, mounting, grinding, polishing, and etching. The influence of microstructures on the failure of a material is discussed and examples of such work are given to illustrate the value of light microscopy. In addition, information on heat-treatment-related failures, fabrication-/machining-related failures, and service failures is provided, with examples created using light microscopy.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004003
EISBN: 978-1-62708-185-6
... do not yield the optimal fatigue and creep properties that may be desired by designers. Rather, controlled intermediate-grain (ASTM 5–10) or coarse-grain (ASTM 0–4) microstructures, which result in both increased fatigue-crack propagation and creep resistance are required ( Ref 6 ). These...
Abstract
The thermomechanical processing (TMP) of conventional and advanced nickel and titanium-base alloys is aimed at altering or enhancing one or more metallurgical features within the material and component. This article presents a number of examples of the TMP of nickel-base superalloys and titanium alloys. The TMP techniques include retained-strain processing, dual-microstructure processing, and dual-alloy processing. The article also describes the TMP of alpha-beta titanium alloys, including fine-grain processing, hybrid-structure processing, dual-microstructure processing, and dual-alloy processing. It concludes with a discussion on computer simulation of advanced TMP processes.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
... Abstract This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005226
EISBN: 978-1-62708-187-0
... Abstract Rapid solidification is a tool for modifying the microstructure of alloys that are obtained by ordinary casting. This article describes the fundamentals of the four microstructural changes, namely, microsegregation, identity of the primary phase, identity of the secondary phase, and...
Abstract
Rapid solidification is a tool for modifying the microstructure of alloys that are obtained by ordinary casting. This article describes the fundamentals of the four microstructural changes, namely, microsegregation, identity of the primary phase, identity of the secondary phase, and formation of noncrystalline phases. It considers three factors: heat flow, thermodynamic constraints/conditions at the liquid-solid interfaces, and diffusional kinetics/microsegregation, to understand the fundamentals of these changes. These factors are described in detail.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003104
EISBN: 978-1-62708-199-3
... describes the forms of embrittlement associated with carbon and low-alloy steels. The article provides information on the effect of composition, manufacturing practices, and microstructure on notch toughness of steels. Finally, it explains the effects of alloy elements, inclusion content, microstructure and...
Abstract
Wear of metals occurs by plastic displacement of surface and near-surface material, and by detachment of particles that form wear debris. This article presents a table that contains the classification of wear. It describes the testing and evaluation of wear and talks about the abrasive wear, lubrication and lubricated wear, and selection of steels for wear resistance. The article discusses the effect of alloying elements, composition, and mechanical properties of carbon and low-alloy steels at elevated temperatures. It talks about the fatigue resistance characteristics of steels, and describes the forms of embrittlement associated with carbon and low-alloy steels. The article provides information on the effect of composition, manufacturing practices, and microstructure on notch toughness of steels. Finally, it explains the effects of alloy elements, inclusion content, microstructure and heat treatment on fracture toughness of steels.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005322
EISBN: 978-1-62708-187-0
... Abstract The term cast iron designates a group of materials that contain more than one constituent in their microstructure due to excess carbon that result in unique characteristics such as the fracture appearance and graphite morphology. This article discusses the classification of cast iron...
Abstract
The term cast iron designates a group of materials that contain more than one constituent in their microstructure due to excess carbon that result in unique characteristics such as the fracture appearance and graphite morphology. This article discusses the classification of cast iron and the various metallurgical aspects, such as composition, alloying element, solidification, and graphite morphologies, of different types of cast iron. It describes the physical properties for various cast irons and the influence of microstructure and chemical composition on each property. The article provides a detailed account on thermal properties, conductive properties, magnetic properties, and acoustic properties of cast iron. It also discusses heat treatment, namely, stress relieving, annealing, normalizing, through hardening, and surface hardening. The article presents a discussion on the welding, machining and grinding, and coating of the types of cast iron.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005230
EISBN: 978-1-62708-187-0
... alloy, section thickness, furnace loading, dissolution rate, diffusivity of solute elements, and so on and can vary from a few minutes to 20 h. In general, the required soak times are longer for castings with coarse microstructures (as in the case of sand casting) compared to those with refined...
Abstract
This article provides an overview of heat treatment processes, namely, solution heat treatment, quenching, and natural and artificial aging. It contains a table that lists various heat treatment tempers commonly practiced for nonferrous castings. The article describes microstructural changes that occur due to the heat treatment of cast alloys.