1-20 of 106 Search Results for

clinical applications

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005655
EISBN: 978-1-62708-198-6
... Abstract Ceramics are used widely in a number of different clinical applications in the human body. This article provides a brief history of the bioceramics field and discusses the classification of bioceramics. These include bioinert ceramics, bioactive ceramics, and bioresorbable ceramics...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005681
EISBN: 978-1-62708-198-6
...-matrix compositions. The article also discusses the compositions, properties, and clinical applications of polyacid-modified composite resins and resin-modified glass-ionomer cements. It concludes with information on biodegradation and biocompatibility of resin-based restorative materials...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005675
EISBN: 978-1-62708-198-6
... in physical properties, and relates the properties and hard-tissue response to particular clinical applications. The article also provides information on the glass or glass-ceramic particles used in cancer treatments. bioactive glasses biocompatibility calcium phosphate ceramics cancer treatments...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006903
EISBN: 978-1-62708-392-8
..., and the clinical applications relevant to these systems. It reviews the challenges and future directions of binder-jetting-based 3D printing. binder jet printing biomaterials computer-aided design Additive Manufacturing Technologies Additive manufacturing (AM) technologies print three-dimensional...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005660
EISBN: 978-1-62708-198-6
... animal and then finally human levels through clinical trials. Given the broad range of materials and applications, factors guiding the biocompatibility of a medical device center on: Type of patient tissue expected to be in contact with the device Detailed characterization (physical, chemical...
Image
Published: 15 June 2020
Fig. 7 Sample applications of material jetting. (a) Audi uses material jetting to rapidly prototype taillights ( Ref 39 ). Courtesy of Stratasys. (b) Material jetting complex geometries with wax leads to high-resolution jewelry ( Ref 40 ). Courtesy of Solidscape. (c) Cardiovascular model from More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004206
EISBN: 978-1-62708-184-9
... Abstract This article reviews the understanding of corrosion interactions between alloys in complex geometries and in applications where there are significant cyclic stresses and potential for wear and fretting motion. These alloys include iron-base, titanium-base, and cobalt-base alloys...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006888
EISBN: 978-1-62708-392-8
..., and PH stainless steels for biomedical applications. In addition, the challenges and obstacles to the clinical use of AM parts are covered. binder jet biomedical devices directed-energy deposition laser powder-bed fusion stainless steel MEDICAL DEVICES, according to the U.S. Food and Drug...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005659
EISBN: 978-1-62708-198-6
... Abstract This article provides a summary of the biocompatibility or biological response of metals, ceramics, and polymers used in medical implants, along with their clinical issues. The polymers include ultrahigh-molecular-weight polyethylene, nonresorbable polymer, and resorbable polymers...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006906
EISBN: 978-1-62708-392-8
...; these implants are not usually meant for widespread clinical use, because they are part of the scaleup of a specific implant technology and more of a research-and-development endeavor. Outlook of Additive Manufacturing in Biomedical Applications The rapid advance of AM in terms of new materials...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005656
EISBN: 978-1-62708-198-6
..., polymers were also investigated for use as prosthetic coatings. Of the porous polymers studied, porous polysulfone, porous polyethylene, and Proplast (a Teflon/graphite fiber material composite) were investigated, and subsequent clinical application was abandoned due to inadequate strength, wear, and high...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006902
EISBN: 978-1-62708-392-8
..., among the panels, the applications of AM in Hematology, Clinical Chemistry, Microbiology, and Immunology are found mostly in 3D printing of microfluidic chips ( Ref 4 ) instead of soft lithography for research and development. Thus, these panels are also excluded in this article. The application of AM...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005741
EISBN: 978-1-62708-171-9
... Abstract This article provides an overview of how thermal spray technology has adapted to meet the needs of the orthopaedic industry. It includes the challenges facing the development of artificial joints, substrate material selection criteria, thermal spray solutions, and clinical outcomes...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006896
EISBN: 978-1-62708-392-8
... models used at the POC is rapidly growing ( Fig. 1 ), with an average growth rate of 50.7% per year at the Mayo Clinic. Fig. 1 Number of anatomical models produced at Mayo Clinic from 2013 to 2021. Projected growth for 2021 was calculated using extrapolation. *Number of anatomical models produced...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006852
EISBN: 978-1-62708-392-8
... and therefore does not need extensive clinical research to establish safety ( Ref 25 ). Class III devices must submit a full application for PMA. There are exceptions for custom devices if they meet requirements articulated under Section 520(b) of the Federal Food, Drug, and Cosmetic Act ( Ref 26 ). The FDA...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006859
EISBN: 978-1-62708-392-8
... Abstract Powder-bed fusion (PBF) is a group of additive manufacturing (AM) processes that includes selective laser sintering, selective laser melting, and electron beam melting. This article explains the processes and parameters of PBF systems that are used for biomedical applications. It also...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006897
EISBN: 978-1-62708-392-8
...-dimensional printing ORTHOTICS AND PROSTHETICS were among the very first healthcare applications of three-dimensional (3D) printing. The field of 3D-printed orthotics and prosthetics has advanced significantly. These advancements include not only hardware and materials but also software, designs, and 3D...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005678
EISBN: 978-1-62708-198-6
... calls for precise surgical techniques and careful consideration of strength requirements. Some of these implants failed due to fatigue and surface fracture, and recent clinical reports have sounded cautionary notes ( Ref 28 , 29 ). Current Status Total hip replacement is now a well-established...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006899
EISBN: 978-1-62708-392-8
... are presented in detail, and the strengths and weaknesses of each process within their applications are discussed. AM processes are discussed in detail, and the materials that are widely used in AM-embedded dental manufacturing are briefly surveyed. The final section concludes with remarks and a preview...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006908
EISBN: 978-1-62708-392-8
... titanium-grade bars for bone implant applications are shown in Table 3 ( Ref 16 ). In addition to displaying superior mechanical properties, Ti-6Al-4V has excellent biocompatibility and therefore, is most extensively used in clinics. For AM processes, there are only two titanium alloys (ASTM F2924-14...