Skip Nav Destination
Close Modal
Search Results for
clinching
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 23 Search Results for
clinching
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2006
Fig. 7 Principle of the clinching process with a fixed die. Source: Ref 13
More
Image
Published: 01 January 2006
Fig. 8 Schematic illustration of TOX clinching method. Source: Ref 15
More
Image
Published: 01 January 2006
Fig. 11 Illustration of the mechanical clinching process. Source: Ref 17
More
Image
Published: 01 January 2006
Fig. 12 Conventional clinching dies (left, middle) and flat anvil for dieless clinching (right). Source: Ref 5
More
Image
Published: 01 January 2006
Fig. 15 Experimental tests on longitudinal and transverse clinching indentations. Source: Ref 18
More
Image
Published: 30 November 2018
Fig. 12 Schematic cross sections of clinching (a) with local incision/cutting and (b) by deformation only
More
Image
Published: 30 November 2018
Fig. 24 (a) Self-clinching stud and panel with stud after installation. (b) Blind rivet stud and overlap joint with stud after installation
More
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0009154
EISBN: 978-1-62708-186-3
... Abstract Mechanical joining by forming includes all processes where parts being joined are formed locally and sometimes fully. This article focuses on the types, advantages, disadvantages, and applications of the various mechanical joining methods, namely, riveting, crimping, clinching...
Abstract
Mechanical joining by forming includes all processes where parts being joined are formed locally and sometimes fully. This article focuses on the types, advantages, disadvantages, and applications of the various mechanical joining methods, namely, riveting, crimping, clinching, and self-pierce riveting.
Image
Published: 30 November 2018
Fig. 13 Examples of various process techniques. (a) Conventional round button clinching. (b) Hole clinching. (c) Flat (flush) hole clinching with stepped hole. (d) Inverted conical hole clinching. The variants in (b) and (c) can be useful for joining brittle materials such as fiber-reinforced
More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006501
EISBN: 978-1-62708-207-5
... Abstract This article compares and contrasts mechanical joining techniques used in the manufacture of aluminum assemblies, including seaming, swaging, flanging, crimping, clinching, dimpling, interference and snap fits, and interlocking joints. It provides basic illustrations of the various...
Abstract
This article compares and contrasts mechanical joining techniques used in the manufacture of aluminum assemblies, including seaming, swaging, flanging, crimping, clinching, dimpling, interference and snap fits, and interlocking joints. It provides basic illustrations of the various methods and summarizes the advantages and disadvantages of each. The article also discusses the use of staples, nails, rivets, and threaded fasteners and provides relevant property and performance data.
Image
Published: 30 November 2018
Fig. 18 Examples of self-piercing rivets. (a) Split rivet. (b) Semitubular self-piercing rivet. (c) Solid self-piercing rivet. (d) Clinch rivet
More
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006712
EISBN: 978-1-62708-210-5
... decreases with increasing prestrain levels. Fig. 2 Forming limit diagram of 0.9-mm (0.035-in.) thick 6022-T43 sheet. Source: Ref 1 Joining and Weldability Alloy 6022 can be mechanically clinched, adhesively bonded, welded, and joined by self-piercing rivets. Resistance spot welding...
Abstract
The automotive sheet alloy 6022 provides improved corrosion resistance, higher formability, and greater strength for dent resistance after thermal exposure compared with other automotive sheet alloys. This datasheet provides information on key alloy metallurgy, processing effects on mechanical properties, and fabrication characteristics of this 6xxx series alloy.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005620
EISBN: 978-1-62708-174-0
... Stainless steel to aluminum Galvanized steel to aluminum alloy Titanium to aluminum alloy Joining for this purpose can be done in various ways, such as mechanical clinching, self-piercing riveting, adhesive bonding, diffusion bonding, explosion welding, friction welding, resistance spot welding...
Abstract
This article describes two methods based on rolling of sheet. The first is roll welding, where two or more sheets or plates are stacked together and then passed through rolls until sufficient deformation has occurred to produce solid-state welds. The other is laser roll welding, which is a hybrid process based on a thin-melting interface for a lap joint of dissimilar-metal sheets using a roller and one-sided laser heating. The article discusses the types, advantages, and applications of roll welding and laser roll welding. It also provides a detailed discussion on the laser roll welding of dissimilar metals.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005154
EISBN: 978-1-62708-186-3
... forming Another flexible method with which several process steps can be included in the same line is roll forming. Using “start-stop” rolls or “flying tools,” clinching, punching, and welding can also be performed at different stages of sequential bending operations. Special rolls may also...
Abstract
Rapid prototyping (RP) techniques in the sheet-metal forming industry is developed to quickly test the form and fit of new sheet-metal products on a prototype basis as well as for production runs characterized by small lot sizes. This article provides an overview of some of the technologies used for RP and low-volume production of sheet-metal parts. It discusses low-cost tooling and flexible sheet-forming processes and reviews the various aspects of incremental sheet forming.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001812
EISBN: 978-1-62708-180-1
Abstract
This article discusses different types of mechanical fasteners, including threaded fasteners, rivets, blind fasteners, pin fasteners, special-purpose fasteners, and fasteners used with composite materials. It describes the origins and causes of fastener failures and with illustrative examples. Fatigue fracture in threaded fasteners and fretting in bolted machine parts are also discussed. The article provides a description of the different types of corrosion, such as atmospheric corrosion and liquid-immersion corrosion, in threaded fasteners. It also provides information on stress-corrosion cracking, hydrogen embrittlement, and liquid-metal embrittlement of bolts and nuts. The article explains the most commonly used protective metal coatings for ferrous metal fasteners. Zinc, cadmium, and aluminum are commonly used for such coatings. The article also illustrates the performance of the fasteners at elevated temperatures and concludes with a discussion on fastener failures in composites.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006805
EISBN: 978-1-62708-329-4
Abstract
This article first provides an overview of the types of mechanical fasteners. This is followed by sections providing information on fastener quality and counterfeit fasteners, as well as fastener loads. Then, the article discusses common causes of fastener failures, namely environmental effects, manufacturing discrepancies, improper use, or incorrect installation. Next, it describes fastener failure origins and fretting. Types of corrosion in threaded fasteners and their preventive measures are then covered. The performance of fasteners at elevated temperatures is addressed. Further, the article discusses the types of rivet, blind fastener, and pin fastener failures. Finally, it provides information on the mechanism of fastener failures in composites.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002127
EISBN: 978-1-62708-188-7
Abstract
Diamond and cubic boron nitride (CBN) are the two hardest materials known. They have found numerous applications in industry, both as ultrahard abrasives and as cutting tools. This article reviews the high-pressure synthesis and fabrication techniques of these materials. It discusses their wear resistance, tool geometries, and machining parameters. The article also explains their application as cutting tools in the field of machining.
1