Skip Nav Destination
Close Modal
Search Results for
classification of wear
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 496 Search Results for
classification of wear
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 6 Classification of the processes of friction leading to wear for elastomers (adapted after Moore, Ref 23 ). The diagram clarifies the role of friction in determining the wear mechanism for elastomeric polymers.
More
Image
Published: 31 December 2017
Image
Published: 01 November 1995
Image
Published: 15 May 2022
Fig. 5 Classification of the processes of friction leading to wear for elastomers. The diagram clarifies the role of friction in determining the wear mechanism for elastomeric polymers. Adapted from Ref 22
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003571
EISBN: 978-1-62708-180-1
... Abstract Plastics or polymers are used in a variety of engineering and nonengineering applications where they are subjected to surface damage and wear. This article discusses the classification of polymer wear mechanisms based on the methodologies of defining the types of wear. The first...
Abstract
Plastics or polymers are used in a variety of engineering and nonengineering applications where they are subjected to surface damage and wear. This article discusses the classification of polymer wear mechanisms based on the methodologies of defining the types of wear. The first classification is based on the two-term model that divides wear mechanisms into interfacial and bulk or cohesive. The second is based on the perceived wear mechanism. The third classification is specific to polymers and draws the distinction based on mechanical properties of polymers. In this classification, wear study is separated as elastomers, thermosets, glassy thermoplastics, and semicrystalline thermoplastics. The article describes the effects of environment and lubricant on the wear failures of polymers. It presents a case study on nylon as a tribological material. The article explains the wear failure of an antifriction bearing, a nylon driving gear, and a polyoxymethylene gear wheel.
Image
Published: 01 January 2002
Image
Published: 15 January 2021
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006404
EISBN: 978-1-62708-192-4
... Abstract The human internal environment plays a vital role in the friction and wear of implants and prosthetic devices. This article describes the tribological/wear behavior of implants. It discusses the classification of active tribological pairs, namely, amphiarthosis joints and diarthosis...
Abstract
The human internal environment plays a vital role in the friction and wear of implants and prosthetic devices. This article describes the tribological/wear behavior of implants. It discusses the classification of active tribological pairs, namely, amphiarthosis joints and diarthosis joints. The article details the classification of total knee replacement, depending on the type of mechanical stability, including nonconstrained knee replacement, semiconstrained knee replacement, and constrained knee replacement. It also discusses the classifications of passive tribological pairs, namely, total disc replacement in the spine, dental implants, and temporomandibular joint. It describes the various testing methods for characterizing the implant materials used in hip, knee, spine, and dental applications. The article also describes the typical standards used for testing wear behavior of tribological pairs, namely, hip-wear simulation standards, knee-wear simulation standards, and spinal disc-wear simulation standards.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006850
EISBN: 978-1-62708-395-9
... mechanisms at the contact zone (between the polymer surface and a hard counterface), which led to several methods of classification. The classification of polymer wear mechanisms that has often been followed in the literature is based on three methodologies of defining types of wear ( Ref 1 ). The first...
Abstract
This article presents the mechanisms of polymer wear and quantifies wear in terms of wear rate (rate of removal of the material). Interfacial and bulk wear are discussed as well as a discussion on the wear study of "elastomers," "thermosets," "glassy thermoplastics," and "semicrystalline thermoplastics." The article also discusses the effects of environment and lubricant on the wear failures of polymers. It presents a case study on considering nylon as a tribological material and failure examples, explaining wear resistance of polyurethane elastomeric coatings and failure of an acetal gear wheel.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002474
EISBN: 978-1-62708-194-8
.... It tabulates the operational classification of wear situations and describes the relationship between wear or wear rate and design parameters. The article reviews the effect of lubrication on wear behavior and the types of lubricants. It illustrates some fundamental criteria that can be applied...
Abstract
Wear is the damage to a solid surface as a result of relative motion between it and another surface or substance. This article discusses the four general ways by which a material can wear, namely, adhesive wear, abrasive wear, fatigue or fatigue-like wear, and corrosive wear. It tabulates the operational classification of wear situations and describes the relationship between wear or wear rate and design parameters. The article reviews the effect of lubrication on wear behavior and the types of lubricants. It illustrates some fundamental criteria that can be applied in the selection of a material for wear applications. The article explains four elements of wear design, such as system analysis, modeling, data gathering, and verification. It concludes with a discussion on the design approach for low-wear computer peripherals.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006392
EISBN: 978-1-62708-192-4
... Abstract This article discusses the classification of wear based on the presence or absence of effective lubricants, namely, lubricated and nonlubricated wear. Variations in ambient temperature, atmosphere, load, and sliding speed, as well as variations in material bulk composition...
Abstract
This article discusses the classification of wear based on the presence or absence of effective lubricants, namely, lubricated and nonlubricated wear. Variations in ambient temperature, atmosphere, load, and sliding speed, as well as variations in material bulk composition, microstructure, surface treatment, and surface finish of steel are also considered. The article discusses the types, wear testing, wear evaluation, and hardness evaluation of abrasive wear. It describes the selection criteria of steels for wear resistance. The article also describes the importance of hardness and microstructure as factors in resistance to wear. It provides a discussion on the resistance of various materials to wear in specific applications. The wear resistance of austenitic manganese steels is also discussed. The article discusses the applications of phosphate coatings, wear-resistant coatings, and ion implantation. It concludes with information on interaction of wear and corrosion.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006416
EISBN: 978-1-62708-192-4
... Abstract Cast irons have been widely used by engineers in applications that require low cost, excellent castability, good damping capacity, ease of machining, and wear resistance. This article discusses the classification of wear for cast irons: adhesive wear, abrasive wear, and erosive wear...
Abstract
Cast irons have been widely used by engineers in applications that require low cost, excellent castability, good damping capacity, ease of machining, and wear resistance. This article discusses the classification of wear for cast irons: adhesive wear, abrasive wear, and erosive wear. Typical wear applications for a variety of cast iron grades are listed in a table. The article reviews the general wear characteristics of gray irons, compacted graphite (CG) irons, and ductile irons. It discusses the typical compositions and properties of white and chilled iron castings. Gray cast iron is the dominant material for both brake drums and disk brake rotors. The article reviews brake lining chemistry effects, graphite morphology effects, and external abrasive effects on brake drums. It concludes with information on cast iron grinding balls.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003104
EISBN: 978-1-62708-199-3
... Abstract Wear of metals occurs by plastic displacement of surface and near-surface material, and by detachment of particles that form wear debris. This article presents a table that contains the classification of wear. It describes the testing and evaluation of wear and talks about the abrasive...
Abstract
Wear of metals occurs by plastic displacement of surface and near-surface material, and by detachment of particles that form wear debris. This article presents a table that contains the classification of wear. It describes the testing and evaluation of wear and talks about the abrasive wear, lubrication and lubricated wear, and selection of steels for wear resistance. The article discusses the effect of alloying elements, composition, and mechanical properties of carbon and low-alloy steels at elevated temperatures. It talks about the fatigue resistance characteristics of steels, and describes the forms of embrittlement associated with carbon and low-alloy steels. The article provides information on the effect of composition, manufacturing practices, and microstructure on notch toughness of steels. Finally, it explains the effects of alloy elements, inclusion content, microstructure and heat treatment on fracture toughness of steels.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also...
Abstract
Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also discusses methods that may apply to any form of wear mechanism, because it is important to identify all mechanisms or combinations of wear mechanisms during failure analysis. The article concludes by presenting several examples of abrasive wear.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006372
EISBN: 978-1-62708-192-4
... Abstract Stainless steels are characterized as having relatively poor wear resistance and tribological properties, but they are often required for a particular application because of their corrosion resistance. This article describes the classification of stainless steels and wear. Stainless...
Abstract
Stainless steels are characterized as having relatively poor wear resistance and tribological properties, but they are often required for a particular application because of their corrosion resistance. This article describes the classification of stainless steels and wear. Stainless steels have been classified by microstructure and are categorized as austenitic, martensitic, ferritic, or duplex. The main categories of wear are related to abrasion, erosion, adhesive wear, and surface fatigue. The article presents a list that proposes the alloy family that could be the optimal selection for a particular wear mode. The corrosion modes include dry sliding, tribocorrosion, erosion, erosion-corrosion, cavitation, dry erosion, erosion-oxidation, galling and fretting.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006371
EISBN: 978-1-62708-192-4
... Abstract Seals are mechanical components that prevent the leakage, diffusion, transfer, or mixing of different liquid, gas, solid, and multiphasic substances. This article begins by discussing the classifications of seals: static and dynamic. Static seals involve both self-energizing...
Abstract
Seals are mechanical components that prevent the leakage, diffusion, transfer, or mixing of different liquid, gas, solid, and multiphasic substances. This article begins by discussing the classifications of seals: static and dynamic. Static seals involve both self-energizing elastomeric materials such as O-rings, which merely react to a sealed fluid pressure, and passive materials that require clamping forces to achieve sealing, such as gaskets. The types of dynamic seals include rotary seals and reciprocating seals. The article describes the factors affecting seal wear and failure. It provides a list of some common seal wear modes and failures, namely abrasion, cavitation damage, chemical attack, compression set, corrosion, damage during abrupt decompression, dieseling damage, extrusion damage, installation damage, spiral or rolling damage, and vaporization damage. The article concludes with specific recommendations for reducting of seal friction and wear.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006374
EISBN: 978-1-62708-192-4
... Abstract This article focuses on friction and wear of automotive and aircraft brakes. It provides a comparison of friction and wear behaviors, frictional characteristics, and frictional performance of the friction materials. The article describes the components of brake friction materials...
Abstract
This article focuses on friction and wear of automotive and aircraft brakes. It provides a comparison of friction and wear behaviors, frictional characteristics, and frictional performance of the friction materials. The article describes the components of brake friction materials and the classifications of brake lining materials. It discusses the effect of formulation compositions and manufacturing processes and the effect of braking operation conditions. The article provides information on aircraft brake linings, which operate under a wide range of kinetic energy conditions. The morphology effect of graphite on automotive brake drum and disk is explained. The article also describes the characteristics of specific wear rates for both normal and local cast iron in automotive brake drums and disk rotors. It provides information on noises, vibrations, and harshness caused by brake pads. The article concludes with information on physical and chemical testing of brakes and toxicity of brake formulation and regulations.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006417
EISBN: 978-1-62708-192-4
... resistance of various tool steels is shown in Fig. 1 . Wear-related applications, in order of ascending abrasion resistance based on the AISI classification, are described below. Fig. 1 Relative abrasion resistance of tool steels. Source: Ref 2 Composition limits of principal types of tool...
Abstract
Tool steels are carbon, alloy, and high-speed steels that can be hardened and tempered to high hardness and strength values. This article discusses the classifications of commonly used tool steels: water-hardening tool steels, shock-resisting tool steels, cold-work tool steels, and hot-work tool steels. It describes four basic mechanisms of tool steel wear: abrasion, adhesion, corrosion, and contact fatigue wear. The article describes the factors to be considered in the selection of lubrication systems for tool steel applications. It also discusses the surface treatments for tool steels: carburizing, nitriding, ion or plasma nitriding, oxidation, boriding, plating, chemical vapor deposition, and physical vapor deposition. The article describes the properties of high-speed tool steels. It summarizes the important attributes required of dies and the properties of the various materials that make them suitable for particular applications. The article concludes by providing information on abrasive wear and grindability of powder metallurgy steels.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006911
EISBN: 978-1-62708-395-9
... Abstract Tribology is the study of contacting materials in relative motion and more specifically the study of friction, wear, and lubrication. This article discusses the classification and the mechanisms of friction, wear, and lubrication of polymers. It describes the tribological applications...
Abstract
Tribology is the study of contacting materials in relative motion and more specifically the study of friction, wear, and lubrication. This article discusses the classification and the mechanisms of friction, wear, and lubrication of polymers. It describes the tribological applications of polymers and the tribometers and instrumentation used to measure the tribological properties of polymers. The article discusses the processes involved in calculating the wear rate of polymers and the methods of characterization of the sliding interface. It provides information on the pressure and velocity limit of polymer composites and polymer testing best practices.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003152
EISBN: 978-1-62708-199-3
... Abstract Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a ductile metal binder. Cermet refers to a composite of a ceramic material with a metallic binder. This article discusses...
Abstract
Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a ductile metal binder. Cermet refers to a composite of a ceramic material with a metallic binder. This article discusses the manufacture, composition, classifications, and physical and mechanical properties of cemented carbides. It describes the application of hard coatings to cemented carbides by physical or chemical vapor deposition (PVD or CVD). Tungsten carbide-cobalt alloys, submicron tungsten carbide-cobalt alloys, and alloys containing tungsten carbide, titanium carbide, and cobalt are used for machining applications. The article also provides an overview of cermets used in machining applications.
1