Skip Nav Destination
Close Modal
Search Results for
clamping dies
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 293
Search Results for clamping dies
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005633
EISBN: 978-1-62708-174-0
... and the other is held in a movable clamp. Voltage is applied between the clamps during the flashing and often during the upset period as well. Clamping ensures good electrical contact between the current-carrying dies and the workpiece and prevents the parts from slipping during the upsetting action. Fig...
Abstract
Flash welding, also called flash butt welding, is a resistance welding process in which a butt joint weld is produced by a flashing action and by the application of pressure. The flash welding process consists of preweld preparation, flashing, upsetting (forging), and postweld heat treatment. This article provides an overview of both flash welding and upset welding and describes the various process and failure origins of flash welding as well as the equipment used. It also explains the characteristics and advantages of solid-state upset welding.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003207
EISBN: 978-1-62708-199-3
... (FW) commonly is used to join sections of metals and alloys in production quantities. It is a resistance/forge welding process in which the items to be welded are securely clamped to electric current-carrying dies, heated by the electric current, and upset ( Fig. 9 ). Clamping ensures good electrical...
Abstract
This article presents a detailed account of the welding parameters, equipment needed, applications, advantages, limitations, and the process variables affecting various types of resistance welding operations, namely, resistance spot welding, resistance seam welding, resistance projection welding, and flash welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001443
EISBN: 978-1-62708-173-3
... on flash welding, high-frequency resistance welding, and capacitor discharge stud welding. It concludes with a discussion on resistance welding of stainless steels, aluminum alloys, and copper and copper alloys. aluminum alloys capacitor discharge stud welding clamping dies copper copper alloys...
Abstract
Resistance welding (RW) encompasses a group of processes in which the heat for welding is generated by the resistance to the flow of electrical current through the parts being joined. The three major resistance welding processes are resistance spot welding (RSW), resistance seam welding (RSEW), and projection welding (PW). This article addresses the considerations for using these processes to join specific types of materials. It discusses the process variations, applicability, advantages, and limitations of these resistance welding processes. The article provides information on flash welding, high-frequency resistance welding, and capacitor discharge stud welding. It concludes with a discussion on resistance welding of stainless steels, aluminum alloys, and copper and copper alloys.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005134
EISBN: 978-1-62708-186-3
... bending, the workpiece is clamped to a fixed form, and a wiper shoe revolves around the form to bend the workpiece ( Fig. 1b ). Compression bending is most useful in bending rolled and extruded shapes. A bend can be made close to another bend in the workpiece without the need for the compound dies...
Abstract
This article describes various bending methods: draw bending, compression bending, roll bending, stretch bending, and ram-and-press bending. It discusses the machines used for the bending of bars. These machines include devices and fixtures for manual bending, press brakes, conventional mechanical and hydraulic presses, horizontal bending machines, rotary benders, and bending presses. The article illustrates the tools used in bending and other bending process. It also tabulates the lubricants required for bending specific metals.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005135
EISBN: 978-1-62708-186-3
... pressure dies are made of low-carbon steel, which can be case hardened to resist wear. Tool steel such as O1, A2, or D2, hardened to 55 to 60 HRC, or aluminum bronze is commonly used for sliding dies. In compression bending equipment, where the tube is clamped to a nonrotating form block, a wiper shoe...
Abstract
This article begins with a discussion on the factors considered in the selection of bending methods. It presents a detailed description of the types of bending method, machines and tools used in the bending and forming of tubing. The article provides an overview of bending tubing with and without a mandrel and hot bending. It concludes with a discussion on the bending of thin-wall tubes and lubrication for tube bending.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001378
EISBN: 978-1-62708-173-3
.... Fig. 2 Schematic showing two dies being used for cold pressure lap welding of two metallic sheets. (a) Die position before welding. (b) Die position after welding The welds are produced by annular, point, or line-shaped pressure dies in mechanical or hydraulic presses or pneumatic clamps...
Abstract
Cold pressure welding can be accomplished by deforming in a lap or butt configuration, drawing, extrusion, and rolling. This article provides a discussion on cold pressure lap welding, cold pressure butt welding and cold pressure welding in drawing process with illustrations. It provides information on the combinations of metals that can be successfully cold welded.
Image
Published: 01 December 1998
Fig. 9 Weld produced when using the flash welding process. (a) Workpieces securely clamped in current-carrying dies before upsetting operation is initiated. (b) Finished weld produced after upsetting operation
More
Image
in Procedure Development and Practice Considerations for Resistance Welding[1]
> Welding, Brazing, and Soldering
Published: 01 January 1993
Fig. 16 Weld produced when using the flash welding process. (a) Workpieces securely clamped in current-carrying dies before upsetting operation is initiated. (b) Finished weld produced after upsetting operation
More
Image
in Procedure Development and Practice Considerations for Resistance Welding[1]
> Welding, Brazing, and Soldering
Published: 01 January 1993
Fig. 21 Weld obtained when using the upset welding process. (a) Workpieces securely clamped in current-carrying dies while pressure and current are applied. (b) Finished weld produced after welding operation is completed
More
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005115
EISBN: 978-1-62708-186-3
... of the feed, but also for die life—is to provide a holddown clamp in the die that grips the material before the shearing action takes place. The heavier the material, the more pronounced is the shear force ( Fig. 10 ). Fig. 10 Shear force on cutoff In many forming dies, the material is pulled up...
Abstract
This article commences with a description of the four basic types of feeding arrangements, namely, hand feeding, hitch feeds, roll feeds, and slide feeds. Air feeds offer the utility of use with a wide variety of presses and machines. The article discusses the mounting and actuation of the air feeds, which allows automatic feeding in machinery that is not normally adaptable to the use of standard feeds. Automatic press feeds are used to improve production and provide uniform, accurate progressions. The article describes the accuracy control techniques for the automatic press feeds and concludes with information on air circuits for the air feeds.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005113
EISBN: 978-1-62708-186-3
... American-style press-brake tooling. (a) Closeup. (b) Tooling with hydraulic clamping. (c) Removing tooling from tool clamp. Courtesy of Wila USA The two major types of bending methods are air-bending and bottoming. Bottoming dies ( Fig. 19 ) use pressure to cancel out springback...
Abstract
Press brakes are a common and versatile type of equipment for bending metal by delivering an accurate vertical force in a confined longitudinal area. This article begins with a discussion on the design, widening methods, and types of materials used in press brakes. It focuses on the two basic drive systems used in operating press brakes, namely, mechanical and hydraulic drive systems. The article also provides an outline on the tooling associated with press-brakes.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003981
EISBN: 978-1-62708-185-6
...°), although some (particularly in large sizes) may encompass up to 220° of a circle to provide sufficient periphery for the specific application. When each die section is no more than 180°, the dies can be made by first machining the flat surfaces of the half-rounds for assembly, clamping the half-rounds...
Abstract
Roll forging is a process for simultaneously reducing the cross-sectional area and changing the shape of heated bars, billets, or plates. This article provides an overview of the process capabilities, production techniques, machines and machine size selection considerations, and types of roll dies and auxiliary tools for the roll forging. It concludes with information on the production examples of roll forging.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003178
EISBN: 978-1-62708-199-3
.... The article also discusses the machines and tools, including dies and mandrels, and lubricants used for these metal forming operations. bars bending drawing forming rods spinning straightening tubes wires Wire, Rod, and Tube Drawing IN THE DRAWING PROCESS, the cross-sectional area...
Abstract
This article discusses the mechanics, surface preparation and principles of metal forming operations such as drawing, bending (draw bending, compression bending, roll bending, and stretch bending), spinning, and straightening of bars, tubes, wires, rods and structural shapes. The article also discusses the machines and tools, including dies and mandrels, and lubricants used for these metal forming operations.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.9781627081856
EISBN: 978-1-62708-185-6
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004031
EISBN: 978-1-62708-185-6
... the housings, with a bed strain aging. displaceable frame opposite to, but on the designed for holding long, narrow forming same centerline as, the main roll and rolling edges or dies. Used for bending and forming air bend die. Angle-forming dies in which the mandrel. The axial rolls control ring height strip...
Abstract
This article is a comprehensive collection of terms related to metalworking operations that produce shapes from forging, extrusion, drawing, and rolling operations.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005165
EISBN: 978-1-62708-186-3
..., integrated shafts; E, spur gearing; F, positive-action cam; G, slide; H, vertical post; J, bell crank; K and R, cams; L, stock straightener; M, automatic gripper in feed slide; N, links; O, adjustable crank; P, stationary gripper with cam-operated jaws; Q, horizontal press with dies; R, cam. See text...
Abstract
Multiple-slide forming is a process in which the workpiece is progressively formed in a combination of units that can be used in various ways for the automated fabrication of a large variety of simple and intricately shaped parts from coil stock or wire. This article discusses the components of multiple-slide rotary forming machines involved in the blanking and forming of strip stock. It describes a complicated application of the two-level forming, with an example.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005136
EISBN: 978-1-62708-186-3
...) for two men to do the straightening, the need for cutoff equipment, and production of only 30 to 40 bars per hour. A stretch straightener has two heads with grips that clamp on the ends of the bar. One head can be adjusted to suit the workpiece length. The other head (tailstock) is powered...
Abstract
Bars, structural shapes, and long parts are straightened by bending, twisting, or stretching. This article describes the straightening of bars, shapes, and long parts by material displacement, heating, and presses. It explains the process of parallel-roll straightening, automatic press roll straightening, moving-insert straightening, parallel-rail straightening, and epicyclic straightening. The article concludes with a discussion on straightening in bar production.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005133
EISBN: 978-1-62708-186-3
... to determine the impact of the initial plastic deformation on the final curvature of the part by the moment release method described later. Different means of load application can be used. Dies are typically used for plate products and clamps for extrusions. Occasionally, dies that impart double curvatures...
Abstract
Compared to cold-formed parts, age-formed parts have lower residual stresses and consequently better stress corrosion resistance. This article addresses the technical issues that arise in the investigations of creep in precipitate-strengthened materials. The issues addressed help in developing alloys and tempers particularly suited for the age-forming process. The different steps involved in the program for predicting the final part shape are discussed. These basic steps involve developing mechanical tests to study creep at low temperatures and low stresses, describing low-temperature creep in terms of a constitutive model, and then using the constitutive model in a process model or finite element analysis to predict the final part shape.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003417
EISBN: 978-1-62708-195-5
... pulled by a mechanism that simultaneously clamps and pulls. The product emerges from the puller mechanism and is cut to the desired length by an automatic, flying cutoff saw. Either manual or automated part removal clears the product from the line for further value-added operations or for inspection...
Abstract
Pultrusion is a cost-effective automated process for manufacturing continuous, constant cross-section composite profiles. This article describes the process characteristics and advantages of pultrusion. It provides information on the applications of pultrusion and discusses the processing equipment and tooling, the material composition, and the process control essential for a basic understanding of the pultrusion process.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003018
EISBN: 978-1-62708-200-6
... Abstract Thermoforming is a manufacturing process in which thermoplastic sheets are heated, softened, clamped onto a mold, and made to conform to the shape of the mold or forming tool. It is ideally suited to large-volume runs of small items. This article focuses on major phases...
Abstract
Thermoforming is a manufacturing process in which thermoplastic sheets are heated, softened, clamped onto a mold, and made to conform to the shape of the mold or forming tool. It is ideally suited to large-volume runs of small items. This article focuses on major phases of thermoforming, namely, sheet transportation, heating, forming/cooling, and trimming, and different thermoforming techniques: basic female forming; basic male forming; matched-mold thermoforming; plug-assist thermoforming; pressure bubble plug-assist vacuum thermoforming; vacuum snapback thermoforming; air-slip thermoforming; and trapped-sheet, contact heat, and pressure thermoforming. It concludes with a discussion on machines and the economic concerns of thermoforming.
1