Skip Nav Destination
Close Modal
Search Results for
chromizing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 42
Search Results for chromizing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1994
Fig. 6 Pack-cementation chromizing/siliconizing apparatus. Pack material composed of 3 wt% Cr, 11 wt% Si, 0.25 wt% NH 4 I, and balance, Al 2 O 3
More
Image
Published: 01 January 2003
Fig. 14 Kinetic data for the chromizing of pure Ni. (a) The specific weight gain as a function of time at different temperatures. (b) Variation of thickness of the inner layer with time at different temperatures. Source: Ref 30
More
Image
Published: 01 January 2006
Fig. 27 Cross-section photograph through a chromized tube. The chromized layer (between 0.2 and 0.4 mm thick) contains about 40 wt% Cr at the surface and about 16 wt% Cr at the diffusion boundary with the carbon steel. The voids near the surface are normal artifacts of the chromizing process
More
Image
Published: 01 December 2004
Fig. 10 Chromized sheet steel (Fe-0.06C-0.35Mn-0.04Si-0.40Ti) color etched to delineate ferrite structure. 3 g K 2 S 2 O 5 , 10 g Na 2 S 2 O 3 , and 100 mL H 2 O. 100×. (A.O. Benscoter)
More
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005775
EISBN: 978-1-62708-165-8
... Abstract Pack cementation is the most widely employed method of diffusion coating. This article briefly reviews pack cementation processes of aluminizing, chromizing, and siliconizing. It contains tables that list typical characteristics of pack cementation processes and commercial applications...
Abstract
Pack cementation is the most widely employed method of diffusion coating. This article briefly reviews pack cementation processes of aluminizing, chromizing, and siliconizing. It contains tables that list typical characteristics of pack cementation processes and commercial applications of pack cementation aluminizing, which is used to improve the performance of steels in high-temperature corrosive environments.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001293
EISBN: 978-1-62708-170-2
... Abstract This article describes the widespread use of diffusion coatings for elevated-temperature protection of the turbine components for aircraft engines and gas turbines. The principles of pack diffusion coating, namely, aluminizing, chromizing, and siliconizing, are discussed. The article...
Abstract
This article describes the widespread use of diffusion coatings for elevated-temperature protection of the turbine components for aircraft engines and gas turbines. The principles of pack diffusion coating, namely, aluminizing, chromizing, and siliconizing, are discussed. The article presents information on the coating formation mechanism of superalloys and explains the steps involved in a typical pack cementation process. It concludes with information on the processing procedures and properties of pack aluminized steels.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003686
EISBN: 978-1-62708-182-5
... aluminizing, chromizing, and siliconizing. pack-cementation coatings halide-activated pack cementation coatings nickel alloys pack cementation pack aluminizing chromizing siliconizing METALLIC MATERIALS used in harsh environmental conditions undergo degradation in various ways. Several forms...
Abstract
This article focuses on the pack-cementation coatings, in particular, halide-activated pack cementation coatings on nickel alloys. It also describes the thermodynamics and kinetics of, and simultaneous deposition of various types of, pack cementation processes. These include pack aluminizing, chromizing, and siliconizing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003218
EISBN: 978-1-62708-199-3
... the characteristics of different pack cementation processes, including aluminizing, siliconizing, chromizing, boronizing, and multicomponent coating. aluminizing boronizing chemical vapor deposition chemical vapor deposition materials chromizing multicomponent coating siliconizing CHEMICAL VAPOR...
Abstract
Chemical vapor deposition (CVD) involves the formation of a coating by the reaction of the coating substance with the substrate. Serving as an introduction to CVD, the article provides information on metals, ceramics, and diamond films formed by the CVD process. It further discusses the characteristics of different pack cementation processes, including aluminizing, siliconizing, chromizing, boronizing, and multicomponent coating.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004156
EISBN: 978-1-62708-184-9
...(s), a halide salt activator, and an inert oxide powder as the matrix. For boiler applications, chromizing, which produces a higher chromium concentration at the tube surfaces, is the most widely accepted process. Co-diffusion coatings that introduce two or more protective elements simultaneously...
Abstract
The presence of certain impurities in coal and oil is responsible for the majority of fireside corrosion experienced in utility boilers. In coal, the primary impurities are sulfur, alkali metals, and chlorine. The most detrimental impurities in fuel oil are vanadium, sodium, sulfur, and chlorine. This article describes the two categories of fireside corrosion based on location in the furnace: waterwall corrosion in the lower furnace and fuel ash corrosion of superheaters and reheaters in the upper furnace. It discusses prevention methods, including changes to operating parameters and application of protective cladding or coatings.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002466
EISBN: 978-1-62708-194-8
Abstract
Surface treatments are used in a variety of ways to improve the material properties of a component. This article provides information on surface treatments that improve service performance so that the design engineer may consider surface-engineered components as an alternative to more costly materials. It describes solidification surface treatments such as hot dip coatings, weld overlays, and thermal spray coatings. The article discusses deposition surface treatments such as electrochemical plating, chemical vapor deposition, and physical vapor deposition processes. It explains surface hardening and diffusion coatings such as carburizing, nitriding, and carbonitriding. The article also tabulates typical characteristics of carburizing, nitriding, and carbonitriding diffusion treatments.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005773
EISBN: 978-1-62708-165-8
... to carbon, a large diffusion rate, and large solubility limits in substrate metals, such as chromium carbide coating onto low- and medium-carbon steels, the formed coatings consist of both a chromium carbide (outer) and a chromium-iron solid-solution layer (inside), as in the conventional chromizing process...
Abstract
The thermoreactive deposition and diffusion process is a heat-treatment-based method to form coatings with compacted layers of carbides, nitrides, or carbonitrides, onto some carbon/nitrogen-containing materials, including steels. The amount of active carbide forming elements/nitride forming elements, coating temperatures and time, and thickness of substrates influence the growth rate of coatings. This article lists carbide and nitride coatings that are formed on carbon/nitrogen-containing metallic materials, and describes the coating process and mechanism of coating reagents. It details the growth process and nucleation process of carbide and nitride coatings formed on the metal surface. The article discusses the advantages, disadvantages, and characteristics of the various coating processes, including high-temperature salt bath carbide coating, high-temperature fluidized-bed carbide coating, and low-temperature salt bath nitride coating.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005771
EISBN: 978-1-62708-165-8
... coating used for oxidation resistance at elevated temperatures Siliconizing by chemical vapor deposition Diffused silicon 925–1040 1700–1900 25 μm–1 mm (1–40 mils) 30–50 Low-carbon steels For corrosion and wear resistance, atmosphere control is critical Chromizing by chemical vapor deposition...
Abstract
Surface hardening improves the wear resistance of steel parts. This article focuses exclusively on the methods that involve surface and subsurface modification without any intentional buildup or increase in part dimensions. These include diffusion methods, such as carburizing, nitriding, carbonitriding, and austenitic and ferritic nitrocarburizing, as well as selective-hardening methods, such as laser transformation hardening, electron beam hardening, ion implantation, selective carburizing, and surface hardening with arc lamps. The article also discusses the factors affecting the choice of these surface-hardening methods.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001283
EISBN: 978-1-62708-170-2
..., as shown schematically in Fig. 6 . Pack cementation is a common industrial process with large-scale applications in chromizing, aluminizing, and siliconizing. Fig. 6 Pack-cementation chromizing/siliconizing apparatus. Pack material composed of 3 wt% Cr, 11 wt% Si, 0.25 wt% NH 4 I, and balance, Al 2...
Abstract
This article presents the principles of chemical vapor deposition (CVD) with illustrations. It discusses the types of CVD processes, namely, thermal CVD, plasma CVD, laser CVD, closed-reactor CVD, chemical vapor infiltration, and metal-organic CVD. The article reviews the CVD reactions of materials related to hard, tribological, and high-temperature coatings and to free-standing structures. It concludes by reviewing the advantages, disadvantages, and applications of CVD.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005932
EISBN: 978-1-62708-166-5
Abstract
This article describes various quenchants, namely, water and inorganic salt solutions, polymers (polyvinyl alcohol, polyalkylene glycol, polyethyl oxazoline, polyvinyl pyrrolidone and sodium polyacrylates), quench oils, and molten salts, which are used for heat treatment of ferrous alloys. It also provides information on the steps for controlling quenching performance for polymer quenchants and oils with an emphasis on measuring quenchant performance, safety measures, and oxidation.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0004050
EISBN: 978-1-62708-183-2
... coating and laser-clad Ni-53Cr coating as well as austenitic steel (Fe27Cr31Ni3.5Mo) and diffusion-chromized coating showed low material loss ( Ref 23 ). Waste Incinerators It is generally accepted that the severity of high-temperature corrosion in waste incineration plants is due to gas-phase...
Abstract
This article describes the specific features and mechanisms of oxidation in thermal spray coatings. It discusses the two forms of hot corrosion in sulfur-containing combustion, namely high-temperature hot corrosion and low-temperature hot corrosion. The article reviews the behavior of corrosion-resistant coatings in boilers. The effects of high-temperature corrosion in waste incinerators are detailed. The article also examines the effects of erosion-corrosion in fluidized bed combustion boilers.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004190
EISBN: 978-1-62708-184-9
Abstract
This article discusses the methods of pulp production, pulp processing, pulp bleaching, and paper manufacturing. It describes various types of digesters, their construction materials, the corrosion problems encountered, and methods to protect these digesters from corrosion. The article examines the corrosion problems in high-yield mechanical pulping, sulfite process, neutral sulfite semichemical pulping, chemical recovery, tall oil plants, wastewater treatment, and recovery boilers. It explains the stages of chlorine-based and nonchlorine bleaching, process water reuse for elemental chlorine-free and nonchlorine bleaching stages, selection of material for bleaching equipment, developments in oxygen bleaching, and the use of highly corrosion-resistant materials for bleach plant equipment. The article reviews the materials used in the construction of paper machine components and specific corrosion problems that affect them. It discusses the composition and corrosive nature of white water. The article also addresses the corrosion and chemical recovery associated with kraft pulping liquors.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005737
EISBN: 978-1-62708-171-9
.... Courtesy of Rolls-Royce plc Alternative Coatings, Technology, and Processes Besides temperature limitations on a number of components, combustion products and debris ingested into the engine may be the cause of the reduction of the life of critical components. Platinum aluminizing and chromizing...
Abstract
This article provides an overview of key thermal spray coatings used in compressors, combustors, and turbine sections of a power-generation gas turbine. It describes the critical components, including combustors, transition ducts, inlet nozzle guide vanes, and first-stage rotating airfoils. Design requirements are reviewed and compared between aerospace and power generation coatings. Application process improvement areas are also discussed as a method of reducing component cost.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003611
EISBN: 978-1-62708-182-5
..., or mechanical stresses, the greater the reservoir of scale-forming element required in the alloy for continued protection. Extreme cases of this concept result in chromizing or aluminizing to enrich the surface regions of the alloy or in the provision of an external coating rich in the scale-forming elements...
Abstract
When metal is exposed to an oxidizing gas at elevated temperature, corrosion can occur by direct reaction with the gas, without the need for the presence of a liquid electrolyte. This type of corrosion is referred to as high-temperature gaseous corrosion. This article describes the various forms of high-temperature gaseous corrosion, namely, high-temperature oxidation, sulfidation, carburization, corrosion by hydrogen, and hot corrosion.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003762
EISBN: 978-1-62708-177-1
...) 25 μm–1 mm (1–40 mils) 30–50 Low-carbon steels For corrosion and wear resistance, atmosphere control is critical Chromizing by chemical vapor deposition 980–1090 (1800–2000) 25–50 μm (1–2 mils) Low-carbon steel, <30; high-carbon steel, 50–60 High- and low-carbon steels Chromized low...
Abstract
This article discusses the metallography and microstructures of carburized, carbonitrided, and nitrided steels, with illustrations. It provides information on the widely used metallographic techniques including sectioning, mounting, grinding and polishing, and etching.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006420
EISBN: 978-1-62708-192-4
..., process) was used to apply vanadium-carbide (VC) and niobium-carbide (NbC) coatings to the tool steels, and the 1060 steel received a chromizing surface treatment ( Ref 9 ). Micrographs of TD treated samples and conditions for the salt-bath immersion are shown in Fig. 8 . Micrographs of pack diffusion...
Abstract
Boronizing is a case hardening process for metals to improve the wear life and galling resistance of metal surfaces. Boronizing can be carried out using several techniques. This article discusses the powder pack cementation process for carrying out boronizing. It describes the structures of boride layers in ferrous materials and boride-layer structures in nickel-base superalloys. The primary reason for boriding metals is to increase wear resistance against abrasion and erosion. The article reviews the wear resistance and coefficient of friction of boride layers, as well as galling resistance of borided surfaces. It concludes with a discussion on boronizing plus physical vapor deposition (PVD) overlay coating.
1