1-20 of 144 Search Results for

chromium carbide-based overlays

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 August 2013
Fig. 4 Micrograph showing the structure of a typical chromium-carbide-base overlay. Original magnification: 400×. Courtesy of Alberta Innovates—Technology Futures More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006391
EISBN: 978-1-62708-192-4
... materials, namely, iron-base overlays, chromium carbide-based overlays, nickel- and cobalt-base alloys, and tungsten carbide-based metal-matrix composite overlays. It discusses the types of hardfacing processes, such as arc welding processes, and laser cladded, oxyacetylene brazing and vacuum brazing...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005712
EISBN: 978-1-62708-171-9
..., and vacuum brazing. The article provides information on the selection of overlays and materials such as chromium-carbide-base overlays and tungsten carbide metal-matrix composites. gas metal arc welding high-velocity oxyfuel thermal spray coating material selection oil sand protective overlays...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003162
EISBN: 978-1-62708-199-3
... Abstract Hardfacing is defined as the application of a wear-resistant material, in depth, to the vulnerable surfaces of a component by a weld overlay or thermal spray process Hardfacing materials include a wide variety of alloys, carbides, and combinations of these materials. Iron-base...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001073
EISBN: 978-1-62708-162-7
... and titanium, thereby increasing the volume fraction of gamma prime (γ′) precipitate. Cobalt in nickel-base superalloys also reduces the tendency for grain boundary carbide precipitation, thus reducing chromium depletion at the grain boundaries ( Ref 2 ). Cemented Carbides The role of cobalt in cemented...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006267
EISBN: 978-1-62708-169-6
... in cobalt-base superalloys Element Effect Chromium Improves oxidation and hot corrosion resistance; produces strengthening by formation of M 7 C 3 and M 23 C 6 carbides Nickel Stabilizes face-centered cubic form of matrix; produces strengthening by formation of intermetallic compound Ni 3...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001442
EISBN: 978-1-62708-173-3
..., and combinations of these materials. Conventional hardfacing materials, also referred to as weld overlays, are normally classified as steels or low-alloy ferrous materials, high-chromium white irons or high-alloy ferrous materials, carbides, nickel-base alloys, or cobalt-base alloys. A few copper-base alloys...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002466
EISBN: 978-1-62708-194-8
... with increasing arc power and travel speed, and the maximum deposition rate is directly related to both the arc and melting efficiency. During the deposition of the weld-overlay coating, the base metal and the filler metal are melted and mixed in the liquid state to form a fusion bond. Depending on the weld...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003771
EISBN: 978-1-62708-177-1
...-solution alloying (e.g., molybdenum, tungsten, tantalum, and niobium) in combination with carbon to promote carbide precipitation. Compared to the wrought alloys, cast cobalt-base superalloys are characterized by higher contents of high-melting metals (chromium, tungsten, tantalum, titanium, and zirconium...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005732
EISBN: 978-1-62708-171-9
... of this are 7 to 8 wt% yttria-stabilized zirconium (YSZ) oxide, tungsten carbide/cobalt (chromium), nickel-chromium/chromium carbide, and aluminum-silicon/20 wt% hexagonal boron nitride materials. The manufacturing method, level of raw material purity, particle density, individual particle grain size...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001425
EISBN: 978-1-62708-173-3
...-hardenable high-temperature materials is the secondary-carbide-strengthened materials. These alloys have an austenitic structure like the above groups, but do not contain sufficient alloy content to precipitate γ′ phase. Instead, they contain generous additions of carbide-forming elements such as chromium...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001428
EISBN: 978-1-62708-173-3
... their respective carbides. Although chromium depletion may occur in the HAZ of welds, as it does with the iron-base alloys in the absence of titanium or columbium, it is only in extremely corrosive media that corrosion resistance is impaired. Manganese Manganese was considered to be relatively unimportant...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003148
EISBN: 978-1-62708-199-3
... for grain boundary carbide precipitation, thus reducing chromium depletion at the grain boundaries. Cobalt is also an important alloying element in some iron-base superalloys. For example, Haynes 556 (UNS R30556) is an Fe-Ni-Cr-Co used extensively in sulfur-bearing environments. The resistance...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005735
EISBN: 978-1-62708-171-9
... the surface of the carbide particles to ensure secure coating adhesion. Among the cemented carbides, tungsten carbide/cobalt-chromium base (WC/CoCr) is considered as the standard for application on ball valve bodies and seats in the petrochemical field, while chromium carbide/nickel-chromium base (Cr 3 C 2...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006079
EISBN: 978-1-62708-175-7
... sufficient chromium in the matrix to resist oxidation. Hence, Laves phase or carbide-containing nickel- or cobalt-base alloys typically are recommended for applications in which wear resistance combined with oxidation or hot corrosion resistance is required. The ability of an alloy to retain strength...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003817
EISBN: 978-1-62708-183-2
... and tungsten contents, such as alloy 6, exhibit hypoeutectic structures comprised of networks of chromium-rich M 7 C 3 particles within the cobalt-rich solid solution (matrix). Sand-cast alloy 6 contains approximately 13 wt% of such carbides. Castings and weld overlays of those alloys with higher carbon...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006364
EISBN: 978-1-62708-192-4
... provides information on metal-matrix composites and cemented carbides. The three base-alloying concepts, including cobalt-, iron-, and nickel-base alloys used for wear-protection applications, are also described. The article compares the tribomechanical properties of the materials in a qualitative manner...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005335
EISBN: 978-1-62708-187-0
... alloys for wear-resistant applications begins with the 1907 patents by Elwood Haynes for his Stellite alloys based on cobalt and chromium. Carbon (and occasionally boron) is used in conjunction with chromium and one or more refractory elements to produce a high-hardness, carbide-rich material...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... Hastelloy X nickel-base superalloy 1205 2200 1 HX (17Cr-66Ni-bal Fe) 1150 2100 1 (a) Seamless tube. (b) Electric resistance welded tube Iron oxides alone are not protective above 550 °C (1020 °F) ( Ref 5 ). Chromium, aluminum, and/or silicon assist in forming scales, which...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003120
EISBN: 978-1-62708-199-3
... in controlling properties are the carbides MC, M 23 C 6 , M 6 C, and M 7 C 3 (rare) in all superalloy types; the γ′ fcc ordered Ni 3 (Al,Ti), γ″ bct (body-centered tetragonal) ordered Ni 3 Nb, η hexagonal ordered Ni 3 Ti, and δ orthorhombic Ni 3 Nb intermetallic compounds in nickel- and iron-nickel-base...