Skip Nav Destination
Close Modal
Search Results for
chromium alloy plating
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1080
Search Results for chromium alloy plating
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001259
EISBN: 978-1-62708-170-2
... Abstract Chromium alloys yield alloy coatings with properties that range from completely satisfactory to marginally acceptable, depending on the end use. This article provides a detailed description of plating solutions and deposition conditions and rates of chromium-iron, chromium-nickel...
Abstract
Chromium alloys yield alloy coatings with properties that range from completely satisfactory to marginally acceptable, depending on the end use. This article provides a detailed description of plating solutions and deposition conditions and rates of chromium-iron, chromium-nickel, and chromium-iron-nickel alloys.
Image
Published: 01 January 1989
Fig. 16 Untreated versus nitrided and chromium-plated taps in tapping an alloy C61000 connector sleeve (95 HRB). Tapping was done in a vertical drill press. Dimensions in figure given in inches Condition or result (a) Untreated taps Treated taps Spindle speed, rev/min 575 900
More
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003833
EISBN: 978-1-62708-183-2
... are unattacked. The corrosion resistance of chromium-plated 40 Ch steel (SAE 5140) in stratal water from oil wells was comparable to high-alloy steels and superior to low-alloy steels ( Ref 24 ). In concrete corrosion testing, heat treated chromium-plated steel requires a shorter heat treatment time and has...
Abstract
This article discusses the corrosion of chromium electrodeposits and the ways for optimizing corrosion resistance. It describes the processing steps and conditions for hard chromium plating. These steps include pretreatment, electroplating, and posttreatment. The article also provides information on duplex coatings and the applications of chromium electrodeposits.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001323
EISBN: 978-1-62708-170-2
... Abstract This article focuses on alternatives to chromium in both hard chromium plating and chromate conversion coating. These include electroless nickel plating, nickel-tungsten composite electroplating, spray coating applications, and cobalt/molybdenum-base conversion coating. The article...
Abstract
This article focuses on alternatives to chromium in both hard chromium plating and chromate conversion coating. These include electroless nickel plating, nickel-tungsten composite electroplating, spray coating applications, and cobalt/molybdenum-base conversion coating. The article discusses the material and process substitutions that can be used to eliminate the use or emissions of chromium in industrial processes. It describes the physical characteristics of each coating, economics, environmental impacts, advantages, and disadvantages of alternative processes.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003687
EISBN: 978-1-62708-182-5
... and durability of plated coatings. High-strength, high-carbon, high-hardness steels are susceptible to hydrogen embrittlement when subjected to alkalies, acids, and plating processes. Aluminum and zinc alloys and, to a lesser extent, chromium are amphoteric (soluble in both acidic and alkaline solutions...
Abstract
This article discusses the various factors that affect the corrosion performance of electroplated coatings. It describes the effects of environment and the deposition process on substrate coatings. The article provides a discussion on the electrochemical techniques capable of predicting the corrosion performance of a plated part. It reviews the designs of coating systems for optimal protection of the substrate. The article also discusses controlled weathering tests and accelerated tests used to predict and determine the relative durability of the coating.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006491
EISBN: 978-1-62708-207-5
... a chromium appearance on aluminum alloys, but they require buffing operations both before and after plating. The finish has good resistance to mild environments and applications involving humid conditions, such as coffee percolators. A thickness range of 0.1 to 0.2 mil is recommended. It also is used...
Abstract
Aluminum components are often plated with other metals to mitigate the effects of corrosion and wear, improve application performance, and extend service life. This article discusses some of the more common aluminum plating processes, including electroplating, immersion plating, and electroless plating, and describes various plating materials and the types of applications in which they are used. It provides critical processing details such as temperatures, ratios, ranges, times, and rates. The article explains how to prepare aluminum components for electroplating, discussing surface roughening, anodizing, and immersion procedures along with expected results.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001243
EISBN: 978-1-62708-170-2
... thicknesses and plating times for selected applications of hard chromium plating Part Base metal Thickness of plate Plating time (a) μm mils Computer printer type Carbon steel 25 1 60 min Face seals Steel or copper 75–180 3–7 10 h Aircraft engine parts Nickel-based alloys...
Abstract
Hard chromium plating is produced by electrodeposition from a solution containing chromic acid and a catalytic anion in proper proportion. This article presents the major uses of hard chromium plating, and focuses on the selection factors, plating solutions, solution and process control, equipment, surface preparation, and crack patterns and other characteristics of hard chromium plating. It offers recommendations for the design and use of plating racks, describes the problems encountered in hard chromium plating, and their corrective procedures. The article provides information on the removal of chromium plate from coated metals, recovery and disposal of wastes, and stopoff media for selective plating.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001271
EISBN: 978-1-62708-170-2
... in continuous steel strip plating lines is electrodeposited with one of five metallic coatings: zinc, tin, chromium, and alloys of zinc with either nickel or iron. Several other metallic coatings, such as copper, nickel, brass (Cu-Zn), and terne (Pb-Sn), are also applied by continuous steel strip plating...
Abstract
This article explains the applications of continuous electroplated steel. For each category of application, the type of coating needed and the key attributes of the coating are discussed. The bulk of the article describes electrodeposition technology, including plating line components and process classification.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001244
EISBN: 978-1-62708-170-2
... or copper and nickel, which give the chromium bright, semibright, or satin cosmetic appearances. Corrosion protection depends on the choice of undercoating, as well as the type of chromium being applied. Parts made from steel, copper and its alloys, zinc, stainless steel, and aluminum are typically plated...
Abstract
Most decorative chromium coatings have been applied using hexavalent and trivalent plating processes that are based on chromic anhydride. This article provides a discussion on chromium electrodeposits and their use as microdiscontinuous coating for corrosion protection. It focuses on the operating conditions of various chromium plating parameters: bath composition, temperature, voltage, anode materials, and current density. These parameters need to be considered for obtaining high quality decorative chromium coatings. An overview of plating problems encountered in chromium plating and their corrections is also provided.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001258
EISBN: 978-1-62708-170-2
..., nickel-manganese alloys, and nickel chromium binary and ternary alloys. It also includes information on the environmental, health, and safety considerations for these nickel-base alloys. health and safety considerations nickel alloy plating nickel-chromium plating nickel-cobalt plating nickel...
Abstract
Nickel alloys electroplated for engineering applications include nickel-iron, nickel-cobalt, nickel-manganese, and zinc-nickel. This article provides the process description and discusses the processing variables, properties, advantages, and disadvantages of nickel-iron, nickel-cobalt, nickel-manganese alloys, and nickel chromium binary and ternary alloys. It also includes information on the environmental, health, and safety considerations for these nickel-base alloys.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005148
EISBN: 978-1-62708-186-3
... treatments such as carburizing or carbonitriding for low-alloy steels or nitriding or physical vapor deposition coating for tool steels. carbonitriding carburizing chromium plating deep drawing drawing die low-alloy steel lubricants nitriding physical vapor deposition surface treatment tool...
Abstract
The selection of material for a drawing die is aimed at the production of the desired quality and quantity of parts with the least possible tooling cost per part. This article discusses the performance of a drawing die. It contains tables that list the lubricants used for deep drawing, and the typical materials for punches and blank holders. The article describes the typical causes of wear (galling) of deep-drawing tooling. It analyzes the selection of a harder and more wear-resistant material, the application of a surface coating such as chromium plating to the finished tools, and surface treatments such as carburizing or carbonitriding for low-alloy steels or nitriding or physical vapor deposition coating for tool steels.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003215
EISBN: 978-1-62708-199-3
... chromium plating are (a) anodes, (b) current density, and (c) bath temperature. Anodes In contrast to other plating baths, which use soluble anodes to supply the bath with a large part of the metal ion being plated, chromium-plating baths are operated with insoluble lead alloy anodes...
Abstract
Copper can be electrodeposited from numerous electrolytes. Cyanide and pyrophosphate alkalines, along with sulfate and fluoborate acid baths, are the primary electrolytes used in copper plating. This article provides information on the chemical composition, plating baths, and operating conditions of electrodeposition processes for chromium plating, nickel plating, iron plating, cadmium plating, zinc plating, indium plating, lead plating, tin plating, silver plating, gold plating, brass plating, bronze plating, tin-lead plating, zinc-iron plating, and zinc-nickel plating. The article also discusses selective plating, electroforming, and other processes and where they are typically used.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006395
EISBN: 978-1-62708-192-4
... chromium, electroplated nickel, electroless (autocatalytic) nickel, electroless nickel composite coatings, electroplated gold, and platinum group coatings. These are specifically tailored toward plated coatings for friction, lubrication, and wear technology. The article concludes with a discussion...
Abstract
This article discusses the fundamentals of electroplating processes, including pre-electroplating and surface-preparation processes. It illustrates the four layers of a plating system, namely, top or finish coat, undercoat, strike or flash, and base material layers. The article describes various plating methods, such as pulse electroplating, electroless plating, brush plating, and jet plating. It reviews the types of electrodeposited coatings, including hard coatings and soft coatings. The article also details the materials available for electroplating, including electroplated chromium, electroplated nickel, electroless (autocatalytic) nickel, electroless nickel composite coatings, electroplated gold, and platinum group coatings. These are specifically tailored toward plated coatings for friction, lubrication, and wear technology. The article concludes with a discussion on the common issues encountered with electroplating.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001245
EISBN: 978-1-62708-170-2
... deposits, and “s” for polished dull or semibright electrodeposited nickel. The type of chromium is given by the following symbols: “r” for regular or conventional chromium, “mp” for microporous chromium, and “mc” for microcracked chromium. Decorative Nickel-Iron Alloy Plating Decorative nickel-iron...
Abstract
This article discusses the process considerations and deposit properties of nickel plating. It describes the Watts solution and the anode materials used. The article focuses on the nickel plating processes used for decorative, engineering, and electroforming purposes. It provides information on the quality control of nickel plating. It concludes with a review of the environmental, health, and safety considerations associated with nickel plating.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001309
EISBN: 978-1-62708-170-2
... cleaning and plating operations. When flawless chromium-plated surfaces are required, it is necessary both to buff and color buff the polished copper alloy surfaces before plating. Chromium reproduces all imperfections in the underlying plating or base metal, and because chromium is hard and has a high...
Abstract
The selection of surface treatments for copper and copper alloys is generally based on application requirements for appearance and corrosion resistance. This article describes cleaning, finishing, and coating processes for copper and copper alloys. These processes include pickling and bright dipping, abrasive blast cleaning, chemical and electrochemical cleaning, mass finishing, polishing and buffing, electroless plating, immersion plating, electroplating, passivation, coloring, and organic coatings.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004218
EISBN: 978-1-62708-184-9
... with the corrosion behavior of important engineering alloys. It describes the corrosion of plating, anodizing, and parts of pickling equipment such as tanks, wirings and bus bars, racks, anode splines, pumps, and heaters. carburization anodizing decarburization high-temperature corrosion molten-salt...
Abstract
The high-temperature corrosion processes that are most frequently responsible for the degradation of furnace accessories are oxidation, carburization, decarburization, sulfidation, molten-salt corrosion, and molten-metal corrosion. This article discusses each corrosion process, along with the corrosion behavior of important engineering alloys. It describes the corrosion of plating, anodizing, and parts of pickling equipment such as tanks, wirings and bus bars, racks, anode splines, pumps, and heaters.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001414
EISBN: 978-1-62708-173-3
... filler metal should be more highly alloyed than the base metal, but the ferrite content of the resulting weld metal should be considered for corrosion or high-temperature service. Some filler metals may give too high a ferrite content, particularly the high-chromium, low-nickel types, such as type 312...
Abstract
This article briefly describes the welding of various stainless steels to dissimilar steels. The stainless steels include austenitic stainless steels, ferritic stainless steels, and martensitic stainless steels. The dissimilar steels include carbon and low-alloy steels. In addition, the article provides information on the cladding of austenitic stainless steel to carbon or low-alloy steels.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001303
EISBN: 978-1-62708-170-2
..., because of its low current efficiency and high internal stress. In such cases, most of the deposit thickness is composed of nickel, with chromium constituting only a thin outer layer. For additional information, see the articles “Nickel Plating” and “Nickel Alloy Plating” in this Volume. Electroless...
Abstract
This article provides a brief review of the classification and characteristics of cast irons. It describes the processes used to clean iron castings, including mechanical cleaning and finishing and nonmechanical cleaning. The article discusses surface treatments used to extend casting life when resistance to corrosion, wear, and erosion is required. The common methods include electroplating, electroless plating, hardfacing, weld cladding, surface hardening, porcelain enameling, and organic coatings.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003219
EISBN: 978-1-62708-199-3
... for tools, dies, etc. Effect much deeper than original implantation depth. Precise area treatment, excellent process control Ion plating, ARE RT-0.7 T m of coating. Best at elevated temperatures Moderate to good Ion plating: Al, other metals (few alloys) ARE: TiN and other compounds Electronic...
Abstract
Physical vapor deposition (PVD) coatings are harder than any metal and are used in applications that cannot tolerate even microscopic wear losses. This article describes the three most common PVD processes: thermal evaporation, sputtering, and ion plating. It also discusses ion implantation in the context of research and development applications.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001313
EISBN: 978-1-62708-170-2
... interfere with the adherence of coatings. Chromium has been a favored strike coating because its thermal coefficient of expansion is similar to that of molybdenum. It has good as-plated adherence, and the two metals diffuse to form a solid solution at elevated temperatures. Nickel has also found extensive...
Abstract
This article addresses surface cleaning, finishing, and coating operations that have proven to be effective for molybdenum, tungsten, tantalum, and niobium. It describes standard procedures for abrasive blasting, molten caustic processing, acid cleaning, pickling, and solvent and electrolytic cleaning as well as mechanical grinding and finishing. The article also provides information on common plating and coating methods, including electroplating, anodizing, and oxidation-resistant coatings.
1