Skip Nav Destination
Close Modal
Search Results for
chloride salt
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 658 Search Results for
chloride salt
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1997
Fig. 13 Relative reductions in rupture life due to sulfate/chloride salt at 705 °C (1300 °F) for several superalloys. For RT-22 coated Udimet 710, rupture time in salt for coated alloy divided by time in air for uncoated alloy. Source: Ref 57
More
Image
Published: 30 September 2015
Image
Published: 30 September 2014
Fig. 6 Effect of salt concentration of sodium hydroxide and sodium chloride solutions. Source: Ref 4
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003609
EISBN: 978-1-62708-182-5
... for the different metal-fused salt systems are also provided. The metal-fused salt systems include molten fluorides, chloride salts, molten nitrates, molten sulfates, hydroxide melts, and carbonate melts. The article concludes with information on prevention of molten salt corrosion. corrosion molten salts...
Abstract
This article discusses two general mechanisms of corrosion in molten salts. One is the metal dissolution caused by the solubility of the metal in the melt. The second and most common mechanism is the oxidation of the metal to ions. Specific examples of the types of corrosion expected for the different metal-fused salt systems are also provided. The metal-fused salt systems include molten fluorides, chloride salts, molten nitrates, molten sulfates, hydroxide melts, and carbonate melts. The article concludes with information on prevention of molten salt corrosion.
Image
in Corrosion in Petroleum Refining and Petrochemical Operations
> Corrosion: Environments and Industries
Published: 01 January 2006
Fig. 28 Chloride stress-corrosion cracking of type 329 (S32900) stainless steel by chloride salts that concentrated as water evaporated
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001388
EISBN: 978-1-62708-173-3
... of selected alloy assemblies Table 1 Parameters for molten-salt dip brazing of selected alloy assemblies Workpiece alloy(s) Temperature Filter metal Salt °C °F Aluminum 540–615 1000–1140 (a) Fluoride-chloride-base Copper 815–870 1500–1600 BCuP (b) Chloride-base Ferrous...
Abstract
This article describes the dip brazing process and the principal types of furnaces used for molten-salt-bath dip-brazing applications. It provides information on equipment maintenance, which is divided into temperature control, control of the liquid, and maintenance of the vessel. The article presents the typical salts used for molten-salt dip brazing of carbon and low-alloy steels with selected filler metals in tabular form. It concludes with information on dip brazing of stainless steels, cast irons, and aluminum alloys and safety precautions of the process.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005929
EISBN: 978-1-62708-166-5
... to make compromises and sacrifice some advantages to obtain the required versatility. The salts that are commonly used include nitrates, carbonates, borates, cyanides, chlorides, fluorides, and caustics, depending on the operation. Salt baths can be classified based on processing temperature...
Abstract
This article provides information on the salt baths used for a variety of heat treatments, including heating, quenching, interrupted quenching (austempering and martempering), case hardening, and tempering. It describes two general types of salt bath systems for steel hardening: the first type uses atmosphere austenitizing followed by salt quench and the second type employs austenitizing salt baths with rapid transfer to the quench salt. The article provides a detailed account on the construction, advantages and disadvantages, and limitations of isothermal quenching furnaces, submerged-electrode furnaces, immersed-electrode furnaces, and externally heated furnaces. It discusses the important applications of various furnace designs, including the austempering of ductile iron, the hardening of tool steels, and the isothermal annealing of high-alloy steels.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003142
EISBN: 978-1-62708-199-3
... titanium alloy UNALLOYED TITANIUM is highly resistant to corrosion by many natural environments, including seawater, body fluids, and fruit and vegetable juices. Titanium is used extensively for handling salt solutions (including chlorides, hypochlorides, sulfates, and sulfides), wet chlorine gas...
Abstract
This article discusses corrosion resistance of titanium and titanium alloys to different types of corrosion, including galvanic corrosion, crevice corrosion, stress-corrosion cracking (SCC), erosion-corrosion, cavitation, hot salt corrosion, accelerated crack propagation, and solid and liquid metal embrittlement. A short section discusses the addition of alloys that can improve the corrosion resistance of titanium.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006070
EISBN: 978-1-62708-172-6
... with regard to corrosion, namely, chlorides, sulfates, and nitrates, and provides information on recognition and testing of the presence of soluble salts. The salt-measurement techniques and commercially available equipment are also described. The article provides information on research regarding tolerable...
Abstract
Soluble salts on a surface can affect a steel substrate or coating in two principal ways: corrosion acceleration and osmotic blistering. This article provides a detailed discussion on the mechanisms for each of these deleterious effects. It describes the most detrimental anions with regard to corrosion, namely, chlorides, sulfates, and nitrates, and provides information on recognition and testing of the presence of soluble salts. The salt-measurement techniques and commercially available equipment are also described. The article provides information on research regarding tolerable levels of salts beneath coatings. The information shows that there appears to be a threshold limit to the salt contamination that a given coating/coating system can tolerate in a given environment.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003581
EISBN: 978-1-62708-182-5
...: reference electrodes and indicator electrodes. It explains that corrosion in molten salts can be caused by the solubility of the metal in the salt, particularly if the metal dissolves in its own chloride. The article describes the factors that affect the corrosion of titanium, namely, the titanium chloride...
Abstract
Molten salts, in contrast to aqueous solutions in which an electrolyte (acid, base, salt) is dissolved in a molecular solvent, are essentially completely ionic. This article begins with an overview of the thermodynamics of cells and classification of electrodes for molten salts: reference electrodes and indicator electrodes. It explains that corrosion in molten salts can be caused by the solubility of the metal in the salt, particularly if the metal dissolves in its own chloride. The article describes the factors that affect the corrosion of titanium, namely, the titanium chloride content of the magnesium chloride melt, magnesium or sodium content, and oxygen content of the product. It concludes with a discussion on the oxygen activity in the titanium metal product.
Image
Published: 30 September 2014
Fig. 6 Service life of electrodes and refractories. Note: Service life estimates are based on the assumption that proper rectification of chloride salts is being done, as well as routine unit maintenance and care. Service life condition of furnaces in diagrams A through E Operating
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004177
EISBN: 978-1-62708-184-9
... and widespread presence, is the most common corrosive species ( Ref 5 ). This neutral salt is the most common, but not the most aggressive. Chloride salts of the weak bases and light metals, such as lithium chloride (LiCl), magnesium chloride (MgCl 2 ), and aluminum chloride (AlCl 3 ) can even more rapidly crack...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005773
EISBN: 978-1-62708-165-8
... of chromium, iron, nitrogen, and carbon in chromium nitride coatings formed on preliminarily nitrided H13 by low-temperature chloride baths with the addition of 20 wt% Cr powders. Coating temperature: 570 °C (1060 °F); time: 8 h. Preliminary nitriding in salt bath: 570 °C (1060 °F); time: 3.5 h Fig. 3...
Abstract
The thermoreactive deposition and diffusion process is a heat-treatment-based method to form coatings with compacted layers of carbides, nitrides, or carbonitrides, onto some carbon/nitrogen-containing materials, including steels. The amount of active carbide forming elements/nitride forming elements, coating temperatures and time, and thickness of substrates influence the growth rate of coatings. This article lists carbide and nitride coatings that are formed on carbon/nitrogen-containing metallic materials, and describes the coating process and mechanism of coating reagents. It details the growth process and nucleation process of carbide and nitride coatings formed on the metal surface. The article discusses the advantages, disadvantages, and characteristics of the various coating processes, including high-temperature salt bath carbide coating, high-temperature fluidized-bed carbide coating, and low-temperature salt bath nitride coating.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003700
EISBN: 978-1-62708-182-5
... may condense in the column and be removed along with a heavier hydrocarbon fraction. In the desalting process, water is mixed into the crude oil to dissolve salts (primarily chloride salts) for removal by separation of the water in the desalting vessel. Salt is a common contaminant in crude oil...
Abstract
This article provides useful information on the occurrence of corrosion in crude oil refinery units, namely, crude unit, catalytic and thermal cracking units, hydroprocessing units, amine sweetening units, and sour water units. Types and applications of corrosion inhibitors, namely, neutralizers, filming inhibitors, scavengers, microbiocides, and anti-foulants and scale inhibitors, are reviewed. The article describes the direct and indirect corrosion monitoring methods used to reduce equipment damage due to corrosion events and to assess the reliability and useful service life of process equipment.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005778
EISBN: 978-1-62708-165-8
...) Deep case, high temperature 900–955 °C (1650–1750 °F) Sodium cyanide 10–23 6–16 Barium chloride … 30–55 (a) Salts of other alkaline earth metals (b) 0–10 0–10 Potassium chloride 0–25 0–20 Sodium chloride 20–40 0–20 Sodium carbonate 30 max 30 max Accelerators other...
Abstract
This article describes the uses of the liquid carburizing process carried out in low and high temperature cyanide-containing baths, and details the noncyanide liquid carburizing process which can be accomplished in a bath containing a special grade of carbon. It presents a simple formula for estimating total case depth, and illustrates the influence of carburizing temperature, duration of carburizing, quenching temperature, and quenching medium with the aid of typical hardness gradients. The article provides information on controlling of cyaniding time and temperature, bath composition, and case depth, and presents examples that relate dimensional change to several shapes that vary in complexity. It also provides information on the quenchant removal and salt removal processes, lists the applications of liquid carburizing in cyanide baths, and discusses the process and importance of cyanide waste disposal in detail.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003821
EISBN: 978-1-62708-183-2
..., copper, manganese, silicon, and carbon. It has found a wide variety of applications involving caustic soda, water, nonoxidizing acids, alkaline salt solutions, chlorine, hydrogen chloride, fluorine, and molten salts. Nickel has relatively high electrical and thermal conductivity as well as a high Curie...
Abstract
This article reviews the corrosion behavior in various environments for seven important nickel alloy families: commercially pure nickel, Ni-Cu, Ni-Mo, Ni-Cr, Ni-Cr-Mo, Ni-Cr-Fe, and Ni-Fe-Cr. It examines the behavior of nickel alloys in corrosive media found in industrial settings. The corrosive media include: hydrochloric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrobromic acid, nitric acid, organic acids, salts, seawater, and alkalis. The modes of high-temperature corrosion include oxidation, carburization, metal dusting, sulfidation, nitridation, corrosion by halogens, and corrosion by molten salts. Applications where the corrosion properties of nickel alloys are important factors in materials selection include the petroleum, chemical, and electrical power industries. Most nickel alloys are much more resistant than the stainless steels to reducing acids, such as hydrochloric, and some are extremely resistant to the chloride-induced phenomena of pitting, crevice attack, and stress-corrosion cracking (to which the stainless steels are susceptible). Nickel alloys are also among the few metallic materials able to cope with hot hydrofluoric acid. The conditions where nickel alloys suffer environmentally assisted cracking are highly specific and therefore avoidable by proper design of the industrial components.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007009
EISBN: 978-1-62708-450-5
... indicate more than 5% cyanide in the chloride rinse, part of the salt should be discarded and the remainder diluted with new salt. All fixtures must be thoroughly cleaned after martempering to prevent transfer of quenching salt to either cyanide baths or neutral chloride baths. Mixing of cyanide...
Abstract
Martempering and austempering processes may eliminate the need for conventional oil quenching and tempering. This article presents the suitability of steels for martempering and austempering. It discusses the compositions of oils suitable for marquenching and modified marquenching and also presents safety precautions recommended for the use of martempering oils. Finally, the article explains the effect of agitation and water in a molten salt bath.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005802
EISBN: 978-1-62708-165-8
... is used, it is essential to control the amount of cyanide buildup in the neutral rinse. When tests indicate more than 5% cyanide in the chloride rinse, part of the salt should be discarded and the remainder diluted with new salt. All fixtures must be thoroughly cleaned after martempering to prevent...
Abstract
This article describes the advantages of martempering and the use of oil and salt as quenchants in the martempering process. It also discusses safety precautions to be followed by an operator and reviews the steels that are suitable for martempering. The article provides information on the importance of controlling process variables in martempering, including austenitizing temperature, temperature of the martempering bath, time in the bath, salt contamination, water additions to salt, agitation, and the rate of cooling from the martempering bath. It also describes specific situations in which distortion problems have been encountered during martempering. The article contains tables that indicate typical applications of martempering in salt and oil by listing commonly treated steel parts and giving details of martempering procedures and hardness requirements. The article also lists equipment requirements for oil and salt martempering of steel.
1