Skip Nav Destination
Close Modal
Search Results for
chip-forming processes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 695
Search Results for chip-forming processes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006494
EISBN: 978-1-62708-207-5
.... This article reviews these general machining factors as well as specific cutting tool and cutting parameters for the six basic chip-forming processes of turning, shaping, milling, drilling, sawing, and broaching. Best practices for each of the six chip-forming processes are suggested for optimized machining...
Abstract
The horsepower requirements to cut various metal alloys provide an indication of the relative ease and cost of machining, but several other important factors include cutting tool material, chip formation, cutting fluids, cutting tool wear, surface roughness, and surface integrity. This article reviews these general machining factors as well as specific cutting tool and cutting parameters for the six basic chip-forming processes of turning, shaping, milling, drilling, sawing, and broaching. Best practices for each of the six chip-forming processes are suggested for optimized machining of aluminum alloys. The article lists the inherent disadvantages of machining processes that involve compression/shear chip formation. It discusses the machining of aluminum metal-matrix composites and nontraditional machining of aluminum, such as abrasive jet, waterjet, electrodischarge, plasma arc, electrochemical, and chemical machining.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005519
EISBN: 978-1-62708-197-9
... understanding of phenomena that cannot be easily measured or studied in experiments, and use that information to guide future design decisions Fundamentals and General Considerations Machining Fundamentals Chip Formation Process Fundamentally, all chip forming processes rely on the same shearing...
Abstract
This article begins with information on the fundamentals of chip formation process and general considerations for the modeling and simulation of machining processes. It focuses on smaller-scale models that seek to characterize the workpiece/tool/chip interface and behaviors closely associated with that. The article describes the advantages and disadvantages of various finite-element modeling approaches, namely, transient models, continuous cutting model, steady-state model, hybrid model, two-dimensional models, and three-dimensional models. It discusses flow stress measurements using constitutive and inverse testing methods and reviews tool design for chip removal. The article explains the effect of tool geometry on burr formation and the effect of coatings on tool temperatures. It concludes with information on tool wear, which is an unavoidable effect of metal cutting.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006306
EISBN: 978-1-62708-179-5
... and improves machinability ( Ref 1 ). Solution-strengthened ferrite with silicon in SS SGI also prevents BUE and increases cutting tool life ( Ref 2 ). Fig. 2 Mechanisms of chip formation. (a) Discontinuous. (b) Continuous. (c) With build-up edge The chip-forming process during machining of gray...
Abstract
Machining of cast iron involves removing metal from the cast part, usually by cutting with a power-driven machine tool. This article discusses the factors that influence machinability, the methods used to evaluate machinability of cast irons, the effects of cast iron microstructure on cutting tool life, and the importance of as-cast surface integrity on the machining variation. It presents examples of cutting tool materials selection for different cast iron grades, and describes the effects of coolants on the machining of cast irons. A chart showing different cutting materials and cutting speed ranges for selected iron-carbon alloys is also presented. Different types of cutting tool wear observed during turning are schematically illustrated.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004172
EISBN: 978-1-62708-184-9
... being used for the high-end (ultralarge-scale integrated circuitry) products because it exhibits a lower electrical resistivity and better electromigration resistance than that of aluminum. The chip is connected to the outside world by a wire bonding (or other forms of interconnects) and a leadframe...
Abstract
In a typical semiconductor integrated circuits (SICs) component, corrosion may be observed at the chip level and at the termination area of the lead frames that are plated with a solderable metal or alloy, such as tin and tin-lead alloys that are susceptible to corrosion. This article focuses on the key factors contributing to corrosion of electronic components, namely, chemicals (salts containing halides, sulfides, acids, and alkalis), temperature, air (polluted air), moisture, contact between dissimilar metals in a wet condition, applied potential differences, and stress. It discusses the chip corrosion and oxidation of tin and tin-lead alloys (solders) in SIC. The article also addresses the corrosion of the device terminations resulting in lead (termination) tarnishing that are caused by various factors, including galvanic corrosion, chemical residues, base metal migration and plating additives.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002172
EISBN: 978-1-62708-188-7
... will form continuous chips or segmented shear-localized chips, one way of defining high-speed machining is to relate it to the chip formation process (see the section “Mechanics of Chip Formation” in this article). Localized shear occurs when the negative effect on strength of increasing temperature due...
Abstract
This article discusses the mechanics of chip formation and reviews the analytical modeling of the chip formation process by high-speed machining within the framework of continuum mechanics. It examines the relationship between the various high-speed machining parameters. The article describes the cutting tool systems for aluminum alloys, steel, superalloys, and titanium alloys and provides an overview of the alternative cutting tool geometries for increasing tool life. It highlights the factors considered by companies planning to employ high-speed machining systems and concludes with information on the applications of high-speed machining.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003186
EISBN: 978-1-62708-199-3
... Abstract Machining is a term that covers a large collection of manufacturing processes designed to remove unwanted material, usually in the form of chips, from a workpiece. This article discusses the basic classes of machining operations, including conventional, abrasive, and nontraditional...
Abstract
Machining is a term that covers a large collection of manufacturing processes designed to remove unwanted material, usually in the form of chips, from a workpiece. This article discusses the basic classes of machining operations, including conventional, abrasive, and nontraditional, and outlines the type of costs incurred by the process. It describes the types of machining equipment, including general-purpose machine tools, production machining systems, and computer numerically controlled machining systems. The article lists the common classes of metallic work materials, in order of decreasing machinability. It also shows the range of dimensional and surface finish tolerances in graphical form that can be achieved using various machining processes under general machining conditions.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002117
EISBN: 978-1-62708-188-7
... Abstract The relative motion between the tool and the workpiece during cutting compresses the work material near the tool and induces a shear deformation that forms the chip. This article discusses the fundamental nature of the deformation process associated with machining. It describes...
Abstract
The relative motion between the tool and the workpiece during cutting compresses the work material near the tool and induces a shear deformation that forms the chip. This article discusses the fundamental nature of the deformation process associated with machining. It describes the mechanics of the machining process, and presents the principles of the orthogonal cutting model. The article also analyzes the effect of workpiece properties on chip formation.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002116
EISBN: 978-1-62708-188-7
... is the basic process by which chips are formed by very small cutting edges that are integral parts of abrasive particles. The principles of abrasive machining, the fundamental differences between metal cutting and grinding, and the abrasives and equipment used for abrasive machining operations are described...
Abstract
This article provides an overview of the independent and dependent variables of a machining process. Independent variables include workpiece material, specific machining processes, and tool materials and geometry. Cutting force and power, surface finish, and tool wear and failure are some dependent variables discussed. The article also describes the relations between the input variables and process behavior.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002179
EISBN: 978-1-62708-188-7
... Processes” in this Volume. In addition, the effects of high cutting speeds (>600 m/min, or 2000 sfm) on the chip formation characteristics of steel are discussed in the article “High-Speed Machining” in this Volume. Data pertaining to the selection and properties of tool materials and cutting fluids...
Abstract
This article describes the influence of steel chemical compositions and microstructure on machining processes. It discusses the various microstructural phases of standard carbon and alloy steels, which influence machinability. The article reviews the expected response of several traditional machining operations, such as turning, drilling, milling, shaping, thread cutting, and grinding, to the microstructure of standard steel grades. It also explains the technologies in non-traditional machining processes, such as abrasive waterjet cutting, electrical chemical grinding, and laser drilling.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002120
EISBN: 978-1-62708-188-7
.... The presence of the BUE changes the shear angle, causing instabilities in the chip-forming process and damage to the machined surface. The lubricating characteristics of cutting fluids are helpful in eliminating this BUE condition. A discussion of the BUE condition can also be found in the article “Mechanics...
Abstract
Cutting tool wear is a production management problem for manufacturing industries. It occurs along the cutting edge and on adjacent surfaces. This article describes steady-state wear mechanisms, tertiary wear mechanisms, and tool replacement. It provides information on tool failure and its consequences. The article details the modeling of tool wear by using the Taylor's tool life equation. The article concludes with information on the requirements of a successful tool life testing program: the test plan objective, designing the test, conducting the test, analyzing the results, and applying the results.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003790
EISBN: 978-1-62708-177-1
.... Macrostructural examination of the exterior of a billet may reveal blisters formed by hydrogen gas pockets forming in the softened material, and cross sections may reveal dissolved gas porosity. In some cases, feedstock is not in billet form. Many magnesium direct semisolid metalworking processes use chipped...
Abstract
This article begins with a description of indirect and direct semisolid metalworking processes. It then provides information on alloy compositions of common aluminum semisolid metalworking alloys and primary die-cast magnesium alloys in a tabular form. The article describes the macroscopic examination of defects, which occur in semisolid metalworking with illustrations. It discusses the macroscopic examination of gating systems and semisolid feedstocks. The article also provides information on feedstock microstructures, direct semisolid metalworking component microstructures, and indirect semisolid metalworking component microstructures of series 300 aluminum casting alloys and magnesium die-casting alloys.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001746
EISBN: 978-1-62708-178-8
.... The high concentration of copper present during combustion will cause much of the sulfur being removed to combine and form copper sulfate (CuSO 4 ). If the copper is combined with tin chips, this reaction usually does not occur. Iron or tin chip accelerators can cause an adverse reaction with some alloys...
Abstract
High-temperature combustion is primarily used to determine carbon and sulfur contained in a variety of materials. This article illustrates the principle of combustion and focuses on the characteristics of accelerators. It provides information on the process of separating oxide compounds formed in the combustion zone. The article provides information on infrared and thermal-conductive detectors, which are used for the detection of CO2 and SO2. Finally, it addresses the requirements of a sample to undergo total and selective combustion, and presents examples showing the applications of high-temperature combustion. .
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005905
EISBN: 978-1-62708-167-2
... wastes or chips, must be melted using the stirring effect, or if the melt to be produced requires more frequent changes of alloy. Melting Brass Chips Returning chip-form recycled material to the production process has a high economical importance in the copper industry. A metal yield of up to 98...
Abstract
Crucible furnaces, as compared to electric arc furnaces, are increasingly deployed in various melting practices due to their environmental and workplace friendliness and their process benefits. This article focuses on the application of induction crucible furnaces for melting and pouring operations in small-and medium-sized steel foundries, including aluminum, copper, and zinc industries. It also provides information on the process engineering benefits of melting and pouring operations.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006363
EISBN: 978-1-62708-192-4
... cutting process can be idealized as two-dimensional. This is referred to as “orthogonal cutting,” where the strains and forces required to form the chip exist in a single plane. This approximation is applied here, and the corresponding relationships are developed ( Ref 2 ). Orthogonal cutting can perhaps...
Abstract
Machining tribology poses a significant challenge due to the multiple parameters that must be simultaneously considered to arrive at a cost-minimized solution in production. This article provides information required to make informed decisions about machining parameters. It describes the relationships between machining parameters, workpiece material properties, cutting forces, and the corresponding temperature field in the chip. The article provides information on tool life, with an empirical model, common wear features, and the relationship between tool life and machining cost. The cutting fluids and their effect on tool life are also discussed. The article discusses machining process dynamics and corresponding vibrations. It contains a table that provides a summary of high-pressure coolant research.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005743
EISBN: 978-1-62708-171-9
..., thickness, opacity, and printability. In addition, protection and support functions are critical properties for packaging products. Some types of papers are manufactured using recycled paper, while others come from wood chips or other processes. It is estimated that 500 billion tons of paper, tissue...
Abstract
Thermal spray coatings, along with certain proprietary sealants, are widely used in the paper manufacturing industry for corrosion and wear resistance and to impart special surface characteristics. This article discusses the steps involved in the paper manufacturing process. Most modern papermaking machines are based on variations of the Fourdrinier machine. The article describes four operational sections of the machine: forming, press, drying, and calendar. It provides an overview of the machine components where thermal spray coatings are used, namely, digesters, blow tanks, suction roll, center press rolls, yankee dryer rolls, calendar rolls, doctor/scalping blades, and cutting equipment.
Image
Published: 01 January 1989
Fig. 2 Schematic of the shear-localized chip formation process that occurs in the high-speed machining of certain materials. 1, undeformed surfaces; 2, part of the catastrophically shear-failed surface separated from the following segment due to intense shear; 3, intense shear band formed due
More
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002139
EISBN: 978-1-62708-188-7
... TAPPING is a machining process for producing internal threads. A tap is a cylindrical or conical thread-cutting tool having threads of a desired form on the periphery. Combining rotary motion with axial motion, the tap cuts or forms the internal thread. Most metals that can be machined with single...
Abstract
Tapping is a machining process for producing internal threads. This article provides a discussion on machines and accessories of tapping. It reviews the seven categories of taps, namely, solid, shell, sectional, expansion, inserted-chaser, adjustable, and collapsible taps, as well as their design and functions. It explains the influences of various factors on the selection of tap design features and discusses the principal factors that influence the selection of equipment and procedure for tapping. The article reviews the factors that determine torque demand. It also provides an overview of tap materials and surface treatment and concludes with a discussion on tapping of taper pipe threads.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005904
EISBN: 978-1-62708-167-2
... furnace is particularly well suited to melting chips, either loose or in briquette form. The best cast iron chips are those which come from the works' own mechanical processing operations, because their chemical composition, as with materials recycled from production, is known and constant. Such chips...
Abstract
The crucible induction furnace is growing as an alternative melting unit to the cupola furnace due to its low specific power and reduced power consumption during solid melting material. This article details the process engineering features of the crucible induction furnace. It discusses the various processes involved in melting, holding, and pouring of liquid melt in crucible induction furnaces wherein the holding operation is carried out in channel furnace and pouring operation in pressure-actuated pouring furnaces. The article examines the behavior of furnace refractory lining to defects such as erosion, infiltration, crack formation, and clogging, and the corresponding preventive measures to avoid the occurrence of these defects. It elucidates the overall furnace operations, including commissioning, operational procedures, automatic process monitoring, inductor change, and dealing with disturbances.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001104
EISBN: 978-1-62708-162-7
... to produce very fine (<1 μm) WC powders. Fig. 1 Tungsten carbide particles produced by the carburization of tungsten and carbon. 10,000× In a more recently developed and patented process, tungsten carbide is produced in the form of single crystals through the direct reduction of tungsten ore...
Abstract
Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a soft and ductile metal binder. The performance of cemented carbide as a cutting tool lies between that of tool steel and cermets. Almost 50% of the total production of cemented carbides is used for nonmetal cutting applications. Their properties also make them appropriate materials for structural components, including plungers, boring bars, powder compacting dies and punches, high-pressure dies and punches, and pulverizing hammers. This article discusses the manufacture, microstructure, composition, classifications, and physical and mechanical properties of cemented carbides, as well as their machining and nonmachining applications. It examines the relationship between the workpiece material, cutting tool and operational parameters, and provides suggestions to simplify the choice of cutting tool for a given machining application. It also examines new tool geometries, tailored substrates, and the application of thin, hard coatings to cemented carbides by chemical vapor deposition and physical vapor deposition. It discusses the tool wear mechanisms and the methods available for holding the carbide tool. The article is limited to tungsten carbide cobalt-base materials.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002134
EISBN: 978-1-62708-188-7
... of the basic machining processes in which the feed of the cutting edges into the workpiece, determining the chip thickness, is built into the tool, called a broach. The machined surface is always the inverse of the profile of the broach, and in most cases it is produced with a single, linear stroke of the tool...
Abstract
This article discusses the fundamentals of broaching, including broach tooth terminology, broach cutting action, and broach size. It describes two types of broaching machines: horizontal and vertical. The article illustrates three general categories of broaches: solid, shell, and insert-type. It tabulates feeds and speeds for broaching various steels with high-speed tool steels and carbide tools. The article also describes the advantages and limitations of broaching and provides a brief discussion on burnishing. The causes and prevention of broach breakage are also discussed. The article concludes with information on broach repair.
1