Skip Nav Destination
Close Modal
Search Results for
chip formation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 572 Search Results for
chip formation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002117
EISBN: 978-1-62708-188-7
... the mechanics of the machining process, and presents the principles of the orthogonal cutting model. The article also analyzes the effect of workpiece properties on chip formation. cutting deformation machining metal deformation orthogonal cutting model shear deformation THE BASIC MECHANISM...
Abstract
The relative motion between the tool and the workpiece during cutting compresses the work material near the tool and induces a shear deformation that forms the chip. This article discusses the fundamental nature of the deformation process associated with machining. It describes the mechanics of the machining process, and presents the principles of the orthogonal cutting model. The article also analyzes the effect of workpiece properties on chip formation.
Image
Published: 31 December 2017
Fig. 2 (a) Tube turning. (b) Chip formation in orthogonal cutting. (c) Chip formation in tube turning
More
Image
Published: 01 January 1989
Fig. 3 Chip formation process viewed inside a scanning electron microscope. The workpiece is a rectangular plate of high-purity gold that was polished on the sides so that the plastic deformation of the shear process can be readily observed. The boxed area in (a), which is shown at a higher
More
Image
Published: 01 January 1989
Image
Published: 01 January 1989
Image
Published: 01 January 1989
Image
Published: 01 January 1989
Fig. 2 Schematic of the shear-localized chip formation process that occurs in the high-speed machining of certain materials. 1, undeformed surfaces; 2, part of the catastrophically shear-failed surface separated from the following segment due to intense shear; 3, intense shear band formed due
More
Image
Published: 01 January 1989
Fig. 3 Examples of continuous (a) and segmented (b) chip formation. Arrows indicate areas of shear localization. Source: Ref 1
More
Image
Published: 01 January 1989
Fig. 4 Effect of cutting speed on chip formation of AISI 4340 steel. (a) Cutting speed of 120 m/min (400 sfm). (b) Cutting speed of 975 m/min (3200 sfm). Source: Ref 1
More
Image
Published: 31 August 2017
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003187
EISBN: 978-1-62708-199-3
... that the basic mechanism of chip formation is shear deformation, which is controlled by work material properties such as yield strength, shear strength, friction behavior, hardness, and ductility. It describes various chip types, as well as the cutting parameters that influence chip formation. It also...
Abstract
Fundamental to the machining process, is the metal-cutting operation, which involves extensive plastic deformation of the work piece ahead of the tool tip, high temperatures, and severe frictional conditions at the interfaces of the tool, chip, and work piece. This article explains that the basic mechanism of chip formation is shear deformation, which is controlled by work material properties such as yield strength, shear strength, friction behavior, hardness, and ductility. It describes various chip types, as well as the cutting parameters that influence chip formation. It also demonstrates how the service life of cutting tools is determined by a number of wear processes, including tool wear, machining parameters, and tool force and power requirements. It concludes by presenting a comprehensive collection of formulas for turning, milling, drilling, and broaching, and its average unit power requirement.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006494
EISBN: 978-1-62708-207-5
... Abstract The horsepower requirements to cut various metal alloys provide an indication of the relative ease and cost of machining, but several other important factors include cutting tool material, chip formation, cutting fluids, cutting tool wear, surface roughness, and surface integrity...
Abstract
The horsepower requirements to cut various metal alloys provide an indication of the relative ease and cost of machining, but several other important factors include cutting tool material, chip formation, cutting fluids, cutting tool wear, surface roughness, and surface integrity. This article reviews these general machining factors as well as specific cutting tool and cutting parameters for the six basic chip-forming processes of turning, shaping, milling, drilling, sawing, and broaching. Best practices for each of the six chip-forming processes are suggested for optimized machining of aluminum alloys. The article lists the inherent disadvantages of machining processes that involve compression/shear chip formation. It discusses the machining of aluminum metal-matrix composites and nontraditional machining of aluminum, such as abrasive jet, waterjet, electrodischarge, plasma arc, electrochemical, and chemical machining.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002172
EISBN: 978-1-62708-188-7
... Abstract This article discusses the mechanics of chip formation and reviews the analytical modeling of the chip formation process by high-speed machining within the framework of continuum mechanics. It examines the relationship between the various high-speed machining parameters. The article...
Abstract
This article discusses the mechanics of chip formation and reviews the analytical modeling of the chip formation process by high-speed machining within the framework of continuum mechanics. It examines the relationship between the various high-speed machining parameters. The article describes the cutting tool systems for aluminum alloys, steel, superalloys, and titanium alloys and provides an overview of the alternative cutting tool geometries for increasing tool life. It highlights the factors considered by companies planning to employ high-speed machining systems and concludes with information on the applications of high-speed machining.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005519
EISBN: 978-1-62708-197-9
... Abstract This article begins with information on the fundamentals of chip formation process and general considerations for the modeling and simulation of machining processes. It focuses on smaller-scale models that seek to characterize the workpiece/tool/chip interface and behaviors closely...
Abstract
This article begins with information on the fundamentals of chip formation process and general considerations for the modeling and simulation of machining processes. It focuses on smaller-scale models that seek to characterize the workpiece/tool/chip interface and behaviors closely associated with that. The article describes the advantages and disadvantages of various finite-element modeling approaches, namely, transient models, continuous cutting model, steady-state model, hybrid model, two-dimensional models, and three-dimensional models. It discusses flow stress measurements using constitutive and inverse testing methods and reviews tool design for chip removal. The article explains the effect of tool geometry on burr formation and the effect of coatings on tool temperatures. It concludes with information on tool wear, which is an unavoidable effect of metal cutting.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002186
EISBN: 978-1-62708-188-7
... chip formation and distortion due to thermal expansion, cold work, and clamping and provides information on magnesium-matrix composites. The article describes materials, design, and sharpness as factors for selection of tool for machining magnesium. It illustrates turning and boring, planing...
Abstract
Magnesium is machined in low-volume production on small, manually operated machine tools and on large, specially built, completely automated transfer machines operating at high production rates. This article focuses on the factors that affect the machining of magnesium. It discusses chip formation and distortion due to thermal expansion, cold work, and clamping and provides information on magnesium-matrix composites. The article describes materials, design, and sharpness as factors for selection of tool for machining magnesium. It illustrates turning and boring, planing and shaping, broaching, drilling, reaming, counterboring, milling, sawing, and grinding operations performed on magnesium. Safety measures related to machining, handling of chips and fines, and fire extinguishing are also discussed.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006306
EISBN: 978-1-62708-179-5
... and flank face are the important cutting tool surfaces because they are subject to wear during machining, which affects cutting tool costs for resharpening and replacement and downtime during replacement of the dull cutting tool. Fig. 1 Terminology in orthogonal cutting The chip formation...
Abstract
Machining of cast iron involves removing metal from the cast part, usually by cutting with a power-driven machine tool. This article discusses the factors that influence machinability, the methods used to evaluate machinability of cast irons, the effects of cast iron microstructure on cutting tool life, and the importance of as-cast surface integrity on the machining variation. It presents examples of cutting tool materials selection for different cast iron grades, and describes the effects of coolants on the machining of cast irons. A chart showing different cutting materials and cutting speed ranges for selected iron-carbon alloys is also presented. Different types of cutting tool wear observed during turning are schematically illustrated.
Image
Published: 31 December 2017
Fig. 9 Effect of cutting edge radius on effective rake angle. (a) When the uncut chip thickness is large relative to the edge radius, the positive macroscopic rake angle defines the chip formation. (b) When the edge radius is on the same order as the uncut chip thickness, the effective rake
More
Image
Published: 01 January 2000
pop up around the scratch track, shown in (a), when the indenter is unloaded. (c) Lateral and median cracks after unloading. Load, 90 g. A, extent of median crack; B, extent of lateral crack. (d), (e), and (f), different parts of the same scratch track showing ductile chip formation at low loads
More
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002116
EISBN: 978-1-62708-188-7
... the trend of other machine tools, and NC lathes can now be routinely purchased. The primary chip formation processes are listed below, with alternative versions in parentheses. Each process is performed on one or more of the basic machine tools. For example, drilling can be performed on drill presses...
Abstract
This article provides an overview of the independent and dependent variables of a machining process. Independent variables include workpiece material, specific machining processes, and tool materials and geometry. Cutting force and power, surface finish, and tool wear and failure are some dependent variables discussed. The article also describes the relations between the input variables and process behavior.
Image
in Environmental and Application Factors in Solid Friction
> Friction, Lubrication, and Wear Technology
Published: 31 December 2017
Fig. 11 Examples of friction contributing to an increase in forces in (a) extrusion, (b) wiredrawing, and (c) machining (chip formation). Source: Ref 81
More
1