Skip Nav Destination
Close Modal
Search Results for
chemical reactive warmers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-14 of 14 Search Results for
chemical reactive warmers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006090
EISBN: 978-1-62708-175-7
... powder used in oxygen scavengers and chemical reactive warmers and heaters. Metal powders used as fuels in solid propellants, pyrotechnic devices, explosives, and similar applications are reviewed. Atomized aluminum, magnesium, tungsten, and zirconium powders are also discussed. atomized aluminum...
Abstract
The primary market for metal powder is the production of powder metallurgy (PM) parts, which are dominated primarily by iron and copper powders. This article reviews the chemical and pyrotechnics applications of ferrous and nonferrous powders. It describes the characteristics of iron powder used in oxygen scavengers and chemical reactive warmers and heaters. Metal powders used as fuels in solid propellants, pyrotechnic devices, explosives, and similar applications are reviewed. Atomized aluminum, magnesium, tungsten, and zirconium powders are also discussed.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006073
EISBN: 978-1-62708-172-6
..., the reactive sites of each of the reacting molecules must align and come within very close proximity to each other (generally within 3 to 5 angstroms (Å = 1 × 10 –10 m) for the chemical crosslinking reaction to occur ( Ref 1 ). For example, in an epoxy resin that is crosslinked with a polyamide copolymer...
Abstract
This article discusses the environmental influences on protective coating films that can result in deterioration. These environmental factors can be classified into four groups: (1) energy: solar, heat; (2) permeation: moisture, solvent, chemical, and gas; (3) stress: drying and curing-internal stress, and vibration-external stress; and (4) biological influences such as microbiological, mildew, and marine fouling.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003844
EISBN: 978-1-62708-183-2
.... The more benign, mild environments are generally warmer, dryer, and less polluted. The more severe environments generally have more moisture or are in immersion and have salts or chemical constituents. Moisture, salts, and chemicals are primary influences of the corrosion process on most materials...
Abstract
Paints and protective coatings are the most common means of protecting materials from deterioration. This article focuses on coating degradation that results from the environmental interaction with the coatings. The major environmental influences of the degradation include energy (solar radiation, heat and temperature variation, and nuclear radiation), permeation (moisture, solvent retention, chemical, and oxygen), stress (drying and curing, vibration, and impact and abrasion), and biological influences (microbiological and macrobiological).
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006018
EISBN: 978-1-62708-175-7
... limited special applications. Examples of binders are polyesters, polyethers, and polybutadienes terminated with chemically reactive groups such as carboxyl or hydroxyl. Two advantages of using aluminum as a fuel in solid propellants are its high combustion energy and its ability to reduce water...
Abstract
Metal powders are used as fuels in solid propellants, fillers in various materials, such as polymers or other binder systems, and for material substitution. They are also used in food enrichment, environmental remediation market, and magnetic, electrical, and medical application areas. This article reviews some of the diverse and emerging applications of ferrous and nonferrous powders. It also discusses the functions of copier powders and the processes used frequently for copier powder coating.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006081
EISBN: 978-1-62708-175-7
... volume of electrolytic powder used. Other applications include dry toner carrier for plain-paper photocopiers, iron-enrichment additives in foods, exothermic food heaters and hand warmers, catalysts, oxygen absorbers, and chemical reagents. Carbonyl iron powders are the only other commercially produced...
Abstract
This article briefly reviews the production methods and characteristics of plain carbon and low-alloy water-atomized iron and steel powders, high-porosity iron powder, carbonyl iron powder, and electrolytic iron powder. It emphasizes on atomized powders, because they are the most widely used materials for ferrous powder metallurgy. The article provides information on the properties and applications of these powders. It also includes an overview of diffusion alloying, basics of admixing, and bonded premixes.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003843
EISBN: 978-1-62708-183-2
... and other embedded metals, chlorides, carbonation, galvanic corrosion, chemical attack, alkali-aggregate reaction, abrasion, erosion, and cavitation as well as many other factors. The article addresses the durability of concrete by two approaches, namely, the prescriptive approach and the performance...
Abstract
Portland cement concrete has low environmental impact, versatility, durability, and economy, which make it the most abundant construction material in the world. This article details the types and causes of concrete degradation. Concrete can be degraded by corrosion of reinforcing steel and other embedded metals, chlorides, carbonation, galvanic corrosion, chemical attack, alkali-aggregate reaction, abrasion, erosion, and cavitation as well as many other factors. The article addresses the durability of concrete by two approaches, namely, the prescriptive approach and the performance approach. In the former, designers specify materials, proportions, and construction methods based on fundamental principles and practices that exhibit satisfactory performance. In the latter, designers identify functional requirements such as strength, durability, and volume changes and rely on concrete producers and contractors to develop concrete mixtures to meet those requirements.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003144
EISBN: 978-1-62708-199-3
...; as an alloying element in copper, aluminum, magnesium, and other alloys; in wrought zinc alloys; and in zinc chemicals. The zinc coating applications of hot dip galvanizing, electrogalvanizing, plating, and thermal spray are presented. The use of zinc alloys in both gravity and pressure die castings is discussed...
Abstract
This article provides information on the properties, compositions, designations, and applications of zinc and zinc alloys. It discusses the principal areas of application of zinc: in coatings and anodes for corrosion protection of irons and steels; in zinc casting alloys; as an alloying element in copper, aluminum, magnesium, and other alloys; in wrought zinc alloys; and in zinc chemicals. The zinc coating applications of hot dip galvanizing, electrogalvanizing, plating, and thermal spray are presented. The use of zinc alloys in both gravity and pressure die castings is discussed as well as the three main types of wrought products: flat-rolled products, wire-drawn products, and extruded and forged products. The article also provides a section on the corrosion resistance of zinc and zinc coatings in various atmospheres.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001272
EISBN: 978-1-62708-170-2
..., which forms zinc-iron layers and creates a metallurgical bond. See Table 3 for properties of alloy layers. 250× The complex structure of layers that comprise a galvanized coating varies greatly in chemical composition and physical and mechanical properties, being affected by chemical activity...
Abstract
This article commences with a description of the applications of galvanized coatings and provides information on metallurgical characteristics, such as coating thickness and alloying elements. It examines the effect of galvanizing process on the mechanical properties of steels and briefly describes the cleaning procedures of iron and steel pieces, before galvanizing. The article discusses the different types of conventional batch galvanizing practices. Information on the galvanizing of silicon-killed steels is also presented. The article concludes with helpful information on batch galvanizing equipment and galvanizing post treatments.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006523
EISBN: 978-1-62708-207-5
..., such as an electrodeposited metal, or an applied layer, such as paint or lacquer. It is also not a chemical conversion coating such as a phosphate or chromate conversion coating. All conversion coatings are equilibrium processes, with only the chemical potential difference between the electrolyte and substrate driving...
Abstract
Anodizing produces a uniform, continuous, highly ordered network of individual cells comprising a layer whose thickness and cell dimensions, and ultimately engineering properties, depend on the electrochemical parameters of the anodizing process. This article discusses the nucleation and growth of anodic aluminum oxide and the important characteristics of the finished porous anodic aluminum oxide. In industry, anodic oxides and the anodizing processes have been categorized into types that exhibit specific properties to suit specific applications. The article reviews the two most basic types of oxides, namely, barrier-layer anodic oxides and porous anodic oxides. It concludes with a description of postanodizing processes, such as dyeing and sealing.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001012
EISBN: 978-1-62708-161-0
... where heat must be confined, diverted, or excluded, as in heat transfer applications. When used for roofing and siding, aluminum-coated sheet keeps buildings cooler in summer and warmer in winter. Weldability Aluminum-coated steel sheet can be joined by electric resistance welding (spot welding...
Abstract
Steel sheet is often coated in coil form prior to fabrication to save time, reduce production costs, and streamline operations. This article examines the most common precoating methods and provides a metallurgical understanding of how they impact the manufacturability, performance, and service life of the host material. The article covers metallic coatings, including zinc, aluminum, zinc-aluminum alloys, tin, and terne; pretreatment or phosphate coatings; and preprimed and painted finishes based on organic coatings.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006946
EISBN: 978-1-62708-387-4
...-power and scanning electron microscopy. Metallography, along with chemical analysis, hardness testing, and mechanical testing, can also help determine the likely processing and thermal history of the fractured component. This article describes the general factors that can influence fracture...
Abstract
This article describes the general factors that can influence fracture appearances. The focus is on the general practical relationships of fracture appearances, with factors presented in some broad categories, including: material conditions (e.g., crystal structure and microstructure); loading conditions (stress state, strain rate, and fatigue); manufacturing conditions (casting, metal-working, machining, heat treatment, etc.); and service and environmental factors (hydrogen embrittlement, stress corrosion, temperature, and corrosion fatigue).
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001264
EISBN: 978-1-62708-170-2
... mechanical properties metallurgical properties physical properties plastics solution composition steel ELECTROLESS NICKEL PLATING is used to deposit nickel without the use of an electric current. The coating is deposited by an autocatalytic chemical reduction of nickel ions by hypophosphite...
Abstract
Electroless nickel plating is used to deposit nickel without the use of an electric current. This article provides an overview of the solution composition and characteristics of the electroless nickel bath. It focuses on the metallurgical, mechanical and physical properties of electroless nickel-phosphorus coatings and electroless nickel-boron coatings. The effect of electroless nickel coatings on the fatigue strength of steel is also described. The article includes information on the recommended pretreatment procedures for different ferrous alloys, aluminum alloys, and copper alloys. It presents a detailed account of the equipment and various processes—including bulk and barrel plating—involved in electroless nickel plating, and discusses hydrogen relief methods. The article includes a comprehensive table on nickel plating applications, and concludes with information on electroless nickel coatings on composites and plastics.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.9781627082136
EISBN: 978-1-62708-213-6
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.9781627081993
EISBN: 978-1-62708-199-3