Skip Nav Destination
Close Modal
Search Results for
chemical blanking
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 370 Search Results for
chemical blanking
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002171
EISBN: 978-1-62708-188-7
... Abstract Photochemical machining (PCM), also known as chemical blanking, is a metal-etching process that uses a photoresist to define the locations where the metal will be etched. This article describes the major steps used in the PCM process, namely, the preparation of the phototool, selection...
Abstract
Photochemical machining (PCM), also known as chemical blanking, is a metal-etching process that uses a photoresist to define the locations where the metal will be etched. This article describes the major steps used in the PCM process, namely, the preparation of the phototool, selection of the metal, preparation of the workpiece, masking with photoresists, etching, and stripping and inspection. The article reviews various design considerations for the PCM process. These include dimensional limitations, tolerances, and edge quality. The article also discusses the advantages, disadvantages, and applications of the PCM process.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003194
EISBN: 978-1-62708-199-3
.... Two processes involved: chemical milling, chemical blanking Fine abrasive particles carried in a high velocity gas stream are used to machine and grind materials Equipment Chemical milling: Large or small, thick parts; masking facilities, corrosion resistant processing tanks and fixtures, vented...
Abstract
This article is a comprehensive collection of summary charts that provide data and information that are helpful in considering and selecting applicable processes alternative to the conventional material-removal processes. Process summary charts are provided for electrochemical machining, electrical discharge machining, chemical machining, abrasive jet machining, laser beam machining, electron beam machining, ultrasonic impact grinding, hydrodynamic machining, thermochemical machining, abrasive flow machining, and electrical discharge wire cutting.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002170
EISBN: 978-1-62708-188-7
... maskants or masks, and parts are etched by immersion in a tank of etchant. The process is rarely electrically assisted. Most of the process applications are for producing parts with high strength-to-weight ratios. Chemical milling differs from chemical blanking, which involves the etching of very thin...
Abstract
This article discusses the principal process steps, specifications, defects, applications, advantages, and disadvantages of chemical milling (CM) in aerospace industries. The process steps include precleaning, masking, scribing, etching, final cleaning, stripping, and mechanical finishing. The article describes the variables that affect undercut and surface finish obtained by CM. The mechanical properties of chemically milled parts are also discussed.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005108
EISBN: 978-1-62708-186-3
... Abstract This article discusses the production of blanks from low-carbon steel sheet and strip in dies in a mechanical or hydraulic press. It describes the cutting operations that are done by dies in presses to produce blanks. The applications of blanking methods are described with examples...
Abstract
This article discusses the production of blanks from low-carbon steel sheet and strip in dies in a mechanical or hydraulic press. It describes the cutting operations that are done by dies in presses to produce blanks. The applications of blanking methods are described with examples. The article reviews the characteristics of blanked edges and explains how to calculate the forces and the work involved in blanking. Factors affecting the processing of blanks are discussed. The article provides information on the selection of work metal form, the effect of work metal thickness on the selection of material for dies and related components, as well as the selection of die type and design. The article illustrates the construction and use of short-run dies and conventional dies. It concludes with information on the shaving and deburring methods for blanking.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005167
EISBN: 978-1-62708-186-3
... to avoid defects or embrittlement. Chemical blanking, electrical discharge machining, abrasive cutting, and milling are preferred for making blanks. The following sequence of operations is generally used in preforming: Form intermediate shape Weld by the gas tungsten arc method Grind weld flush...
Abstract
This article describes the formability and surface contamination of the refractory metals such as niobium, tantalum, molybdenum, tungsten, and titanium-zirconium-molybdenum alloys. It reviews the factors that affect mechanical properties and formability during rolling and heat treatment. The effect of temperature on the formability of refractory metals is discussed. The article provides a description of the forming methods of sheet and preformed blanks using refractory metals. It also discusses the types of lubricants, including oils, soaps, waxes, silicones, graphite, and molybdenum disulphide, used in the forming of refractory metals.
Image
in Microbiologically Influenced Corrosion Testing
> Corrosion: Fundamentals, Testing, and Protection
Published: 01 January 2003
Fig. 6 Polarization curves measured on mild steel in the solution of biogenic and chemical sulfide. A, blank; B, biogenic sulfide; C, chemical sulfide
More
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005142
EISBN: 978-1-62708-186-3
... beryllium. The article discusses the role of lubrication, blank development, tool designs, and strain rates, in deep drawing. It also provides information on the tooling and applications of three-roll bending, stretch forming, and spinning. beryllium blank development deep drawing dies formability...
Abstract
This article describes the effect of temperature, composition, strain rate, and fabrication history on the results obtained in the forming of beryllium as well as the safety measures required. It provides information on the equipment, tooling, dies, and workpieces used for forming beryllium. The article discusses the role of lubrication, blank development, tool designs, and strain rates, in deep drawing. It also provides information on the tooling and applications of three-roll bending, stretch forming, and spinning.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001106
EISBN: 978-1-62708-162-7
... boron nitride compounds are available in the form of grit and sintered polycrystalline blanks of various size, shape, and composition. The article explains how superabrasive grains made from these materials can be used in lapping, polishing, and grinding applications, and how diamond and boron nitride...
Abstract
Synthetic diamond and cubic boron nitride are among a class of superhard materials from the boron-carbon-nitrogen-silicon family of elements. This article focuses on the two materials, the forms in which they are produced, and their respective properties. Synthetic diamond and cubic boron nitride compounds are available in the form of grit and sintered polycrystalline blanks of various size, shape, and composition. The article explains how superabrasive grains made from these materials can be used in lapping, polishing, and grinding applications, and how diamond and boron nitride blanks can be mounted to suitable substrates to form ultrahard cutting edges and tools.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006634
EISBN: 978-1-62708-213-6
... discussed in Division 4, “Chemical Analysis and Separation Techniques,” in this Volume, including gas, liquid, and ion chromatography, and electrochemical methods. Thus, to obtain quantitative information, the raw output from an instrument (information) must be converted into a physical quantity (knowledge...
Abstract
Most modern instrumental techniques produce an output or signal that is not absolute. To obtain quantitative information, the raw output from an instrument must be converted into a physical quantity. This is done by standardizing or calibrating the raw response from an instrument and subsequently analyzing the uncertainty from both the calibration process and the measurement process. This article briefly summarizes the most common calibration and uncertainty analysis methods, namely external standard methods, abbreviated external standard methods, internal normalization, internal standard, standard addition, and serial dilution methods. In addition, it includes information on the traceability of true value of a measured quantity.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005104
EISBN: 978-1-62708-186-3
... then be taken as a criterion for critical tool wear. Wear Control Friction does not affect the process of shearing (blanking, punching) itself, and therefore the prime purpose of lubrication is to reduce die wear. Adhesive, abrasive, fatigue, and chemical wear mechanisms contribute to a loss of punch...
Abstract
Shearing is a process of cutting flat product with blades, rotary cutters, or with the aid of a blanking or punching die. This article commences with a description of some wear and material factors for tools used to shear flat product, principally sheet. Methods of wear control are reviewed in terms of tool materials, coatings and surface treatments, and lubrication. The article discusses tool steels that are used for cold and hot shearing, and rotary slitting. It provides information on the materials used for two main categories of machine knives: circular knives and straight knife cutters. The article also discusses the selection of materials for blanking and piercing dies and provides examples that illustrate the various types of tooling changes for blanking high-carbon steel.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005912
EISBN: 978-1-62708-167-2
... “blank” of glass that is manufactured in a bulk format for cost and quality considerations. The blank of glass must be “drawn” or stretched from a blank that is multiple inches in diameter to an optical fiber that has a diameter of fewer than 125 μm (5 mils). So this application of induction is to modify...
Abstract
The optical fiber preform is a long cylinder of glass that contains core and cladding glasses. This article describes the relationship between the peak furnace temperature, fiber draw tension, and fiber draw speed. It focuses on temperature requirements such as product viscosity, hot zone length, temperature profile, and heating cycle to draw the glass. The article provides information on process gases in the draw induction furnace, insulation package for induction heating operations, and furnace design and scalability. It reviews the key factors for the selection of susceptor materials, namely, cost, temperature cycling, and the impact on the product.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006425
EISBN: 978-1-62708-192-4
... Drawing In the deep drawing process, flat sheet metal or blank is formed into a desired part by means of a punch that presses the blank into the die cavity, as seen in Fig. 1(a) . This process involves complex material flow and force distributions, and the following parameters are important...
Abstract
This article discusses the tribology of three main sheet forming processes: deep drawing, bending, and shearing. For each process, the basic principle of the forming process is briefly explained. Tribological phenomena observed in each process, such as wear and galling, are presented. Common methods of using lubricants and coatings in sheet forming processes are also described.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005110
EISBN: 978-1-62708-186-3
... Abstract Fine-blanking is a hybrid metal forming process that combines the technologies of stamping and cold extrusion. This article describes the three principal design features of the fine blanking process: the vee-ring, clearance between punch and die, and counterforce imposed by the ejector...
Abstract
Fine-blanking is a hybrid metal forming process that combines the technologies of stamping and cold extrusion. This article describes the three principal design features of the fine blanking process: the vee-ring, clearance between punch and die, and counterforce imposed by the ejector. It discusses the advantages and disadvantages of edge blanking and materials. The article reviews the classification of fine-blanking dies such as the moving-punch system and the fixed-punch system, and provides information on the mechanical and hydraulic fine-blanking presses.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005139
EISBN: 978-1-62708-186-3
... stainless coils do not seem to chemically react with the stainless surface and have been found to serve as a barrier coating, reducing corrosion potential for coils seeing moisture in transit. Blanking and Piercing The shear strength of stainless steel is approximately twice that of low-carbon steel...
Abstract
This article discusses the selection of types of stainless steel for various methods of forming based on the formability and on the power required for forming. It reviews the requirements of lubrication, blanking, and piercing. The article describes various forming methods, namely, press-brake forming, press forming, multiple-slide forming, deep drawing, spinning, rubber-pad forming, drop hammer forming¸ three-roll forming, contour roll forming, stretch forming, and bending of tubing.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004004
EISBN: 978-1-62708-185-6
... Abstract Cold heading is typically a high-speed process where a blank is progressively moved through a multi-station machine. This article discusses various cold heading process parameters, such as upset length ratio, upset diameter ratio, upset strain, and process sequence design. It describes...
Abstract
Cold heading is typically a high-speed process where a blank is progressively moved through a multi-station machine. This article discusses various cold heading process parameters, such as upset length ratio, upset diameter ratio, upset strain, and process sequence design. It describes the various components of a cold-heading machine and the tools used in the cold heading process. These include headers, transfer headers, bolt makers, nut formers, and parts formers. The article explains the operations required for preparing stock for cold heading, including heat treating, drawing to size, machining, descaling, cutting to length, and lubricating. It lists the advantages of the cold heading over machining. Materials selection criteria for dies and punches in cold heading are also described. The article provides examples that demonstrate tolerance capabilities and show dimensional variations obtained in production runs of specific cold-headed products. It concludes with a discussion on the applications of warm heading.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005119
EISBN: 978-1-62708-186-3
... Abstract This article discusses the presses, auxiliary equipment, and dies used in the blanking and piercing of commonly used magnetically soft materials, namely, low-carbon electrical steels and oriented and nonoriented silicon electrical steels. It describes the effect of stock thickness...
Abstract
This article discusses the presses, auxiliary equipment, and dies used in the blanking and piercing of commonly used magnetically soft materials, namely, low-carbon electrical steels and oriented and nonoriented silicon electrical steels. It describes the effect of stock thickness and work metal composition and condition on blanking and piercing. The article provides an overview of the influence of burr height on stacking factors and presents a discussion on the lubrication and core plating of electrical steels that ease the process.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
... in understanding both necking and splitting. Splits typically open between 0 and 45° to the direction of load application, but this is complicated by complex blank and part shapes, die process, and metal flow. Splits are not found on critical radii but instead can be seen at the tangent point between the radii...
Abstract
Sheet forming failures divert resources from normal business activities and have significant bottom-line impact. This article focuses on the formation, causes, and limitations of four primary categories of sheet forming failures, namely necks, fractures/splits/cracks, wrinkles/loose metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005109
EISBN: 978-1-62708-186-3
... strength stock thickness transfer dies PIERCING is the cutting of holes in sheet metal, generally by removing a slug of metal, with a punch and die. Piercing is similar to blanking, except that in piercing the work metal that surrounds the piercing punch is the workpiece and the punched-out slug...
Abstract
This article illustrates the characteristics of pierced holes and summarizes the hole wall quality. Specific guidance in selecting die clearances is provided by considering the types of edges produced with different clearances. The article discusses the effect of tool dulling and the use of small and large clearance. It informs that the force needed to pierce a given material depends on the shear strength of the work metal, the peripheral size of the hole or holes to be pierced, stock thickness, and depth of shear on the punch. The article discusses the presses and tools used in piercing. It illustrates the use of compound dies, progressive dies, and transfer dies; piercing of thick and thin stock and piercing holes at an angle to the surface; special piercing techniques; and shaving of low-carbon steels.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001731
EISBN: 978-1-62708-178-8
... information on how to set up and run a variety of UV/VIS absorption tests. chemical analysis composition concentration profiles sample preparation spectrophotometry surface characterization trace element concentrations ultraviolet/visible absorption spectroscopy Overview Introduction...
Abstract
Ultraviolet/visible (UV/VIS) absorption spectroscopy is a powerful yet cost-effective tool that is widely used to identify organic compounds and to measure the concentration of principal and trace constituents in liquid, gas, and solid test samples. This article emphasizes the quantitative analysis of elements in metals and metal-bearing ores. The instrumentation required for such applications consists of a light source, a filter or wavelength selector, and some type of visual or automated sensing mechanism. The article examines common sensing options and provides helpful information on how to set up and run a variety of UV/VIS absorption tests.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003599
EISBN: 978-1-62708-182-5
... and purified for noble metal impurities before being reintroduced into the catholyte compartment of the cell. Principles of the Electrochemical Reactions Electrochemical reactions are heterogeneous chemical reactions that occur via the transfer of charge across the interface between an electrode...
Abstract
Electrochemical refining is the purification process for producing commercially pure metals from crude metals. This article describes the principles of electrochemical reactions. It discusses the physical properties of the basic components of electrochemical refining cell. The article also explains the engineering considerations required in the refining process. Theoretical and technological principles of electrochemical refining are illustrated, with examples.
1