Skip Nav Destination
Close Modal
Search Results for
channel inductors
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 65 Search Results for
channel inductors
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005902
EISBN: 978-1-62708-167-2
... Abstract An induction channel furnace consists of a tiltable furnace vessel with refractory lining onto which an inductor or several inductors are flange mounted. This article includes a discussion on the design for holding and dosed-pouring of the iron melts, design for melting the materials...
Abstract
An induction channel furnace consists of a tiltable furnace vessel with refractory lining onto which an inductor or several inductors are flange mounted. This article includes a discussion on the design for holding and dosed-pouring of the iron melts, design for melting the materials, and refractory lining of furnace vessel. It provides information on the structural changes and refractory lining of channel inductors. The article also includes a discussion on power supplies deployed in channel inductor furnaces: line-frequency power supply for melting iron, and converter power supply for melting nonferrous metals. It concludes with an overview of the inductor cooling circuit.
Image
Published: 09 June 2014
Fig. 15 Channel inductor permits easy entry and exit of the components. This simplifies mechanical handling compared to using oval coils. Courtesy of Inductoheat, Inc.
More
Image
in Introduction and Fundamental Principles of Induction Melting
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 14 Design of a double-loop channel inductor used for melting of copper and copper alloys. Source: Otto Junker
More
Image
in Systematic Analysis of Induction Coil Failures and Prevention
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 9 The horseshoe-shaped portion of this single-shot (channel) inductor has numerous scratches resulting from improper locating of a splined shaft in the heating position. As a result, coil life was dramatically reduced. Source: Ref 9
More
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005891
EISBN: 978-1-62708-167-2
... Abstract Induction heating has the ability to concentrate the electromagnetic field and heat within a certain area of the workpiece. This article provides a detailed discussion on the end heating of bars, rods, and billets using solenoid inductors, oval inductors, and channel inductors...
Abstract
Induction heating has the ability to concentrate the electromagnetic field and heat within a certain area of the workpiece. This article provides a detailed discussion on the end heating of bars, rods, and billets using solenoid inductors, oval inductors, and channel inductors. It reviews the importance of computer modeling in predicting the impact of different, interrelated, and nonlinear factors on the transitional and final thermal conditions of billets and bars. The article describes the most appropriate processes to improve end heating process effectiveness. Induction bending of narrow circumferential band of pipe or tube is also discussed. The article concludes with a discussion on stress relieving of pipe ends and welded areas.
Image
Published: 31 August 2017
Fig. 31 Variants of a pressure-actuated pouring device with stopper dosing (teapot system). (a) Heated with channel inductor. (b) Heated with crucible inductor. (c) Unheated
More
Image
Published: 09 June 2014
Fig. 35 Variants of a pressure-actuated pouring device with stopper dosing (teapot system). (a) Heated with channel inductor. (b) Heated with crucible inductor. (c) Unheated. Source: Ref 37
More
Image
Published: 09 June 2014
Fig. 13 An occurrence of the electromagnetic proximity effect when using oval or channel inductors. A greater amount of heat sources (power density) is induced in those areas of the heated parts that are closest to the copper of the inductor. Source: Ref 1
More
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005895
EISBN: 978-1-62708-167-2
... installations. channel induction furnaces crucible furnaces induction melting induction skull melting inductor crucible cold furnaces power supplies INDUCTION MELTING has been applied successfully in the ferrous and nonferrous industry for many decades. However, induction melting also is used...
Abstract
In the metal producing and processing industries, induction melting and holding has found wide acceptance. This article provides a detailed account of the physical principles of induction melting processes. It discusses the fundamental principles and components of induction furnaces such as induction crucible furnaces, channel induction furnaces, and induction furnaces with cold crucible. The article describes the advantages, applications, and fundamental principles of induction skull melting. It also provides information on the various specific application-designed induction melting installations.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005841
EISBN: 978-1-62708-167-2
..., channel (slot), pancake, hairpin, butterfly, split-return, or internal coils. It discusses the variables pertinent to the design of inductors for brazing, soldering, or heat treating. The article presents various considerations for designing inductors for brazing of dissimilar materials that present...
Abstract
Inductors used for brazing can be machined from solid copper shapes or fabricated out of copper tubing, depending on the size and complexity of the braze joint geometry to be heated. This article provides information on inductors (coils) that are generally classified as solenoid, channel (slot), pancake, hairpin, butterfly, split-return, or internal coils. It discusses the variables pertinent to the design of inductors for brazing, soldering, or heat treating. The article presents various considerations for designing inductors for brazing of dissimilar materials that present a unique challenge in the field of induction brazing.
Image
Published: 09 June 2014
Fig. 4 A channel-type inductor (also called a slot or skid coil) for heating bar ends. Courtesy of Inductoheat, Inc.
More
Image
in Operation of Induction Furnaces for Steel and Non-iron Materials
> Induction Heating and Heat Treatment
Published: 09 June 2014
Image
in Systematic Analysis of Induction Coil Failures and Prevention
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 22 Laminations applied to a channel-type inductor function as a magnetic flux concentrator. Source: Ref 17
More
Image
Published: 01 November 2010
Fig. 54 Single-shot induction hardening of shafts using a channel-type inductor. Courtesy of Inductoheat, Inc.
More
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005904
EISBN: 978-1-62708-167-2
.... It discusses the various processes involved in melting, holding, and pouring of liquid melt in crucible induction furnaces wherein the holding operation is carried out in channel furnace and pouring operation in pressure-actuated pouring furnaces. The article examines the behavior of furnace refractory lining...
Abstract
The crucible induction furnace is growing as an alternative melting unit to the cupola furnace due to its low specific power and reduced power consumption during solid melting material. This article details the process engineering features of the crucible induction furnace. It discusses the various processes involved in melting, holding, and pouring of liquid melt in crucible induction furnaces wherein the holding operation is carried out in channel furnace and pouring operation in pressure-actuated pouring furnaces. The article examines the behavior of furnace refractory lining to defects such as erosion, infiltration, crack formation, and clogging, and the corresponding preventive measures to avoid the occurrence of these defects. It elucidates the overall furnace operations, including commissioning, operational procedures, automatic process monitoring, inductor change, and dealing with disturbances.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005905
EISBN: 978-1-62708-167-2
... of Induction Furnaces in Iron Foundries” in this Volume, channel furnaces usually are applied as melting units in works for semifinished products, due to their higher electrical efficiency and the individually determinable capacities. The melting output required is provided by an inductor flanged onto...
Abstract
Crucible furnaces, as compared to electric arc furnaces, are increasingly deployed in various melting practices due to their environmental and workplace friendliness and their process benefits. This article focuses on the application of induction crucible furnaces for melting and pouring operations in small-and medium-sized steel foundries, including aluminum, copper, and zinc industries. It also provides information on the process engineering benefits of melting and pouring operations.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005846
EISBN: 978-1-62708-167-2
..., and linear coils. It provides information on the role of magnetic flux controllers for whole-body and local area mass-heating applications, continuous induction tube welding, seam-annealing inductors, and various induction melting systems, namely, channel-type, crucible-type, and cold crucible systems...
Abstract
Magnetic flux controllers are materials other than the copper coil that are used in induction systems to alter the flow of the magnetic field. This article describes the effects of magnetic flux controllers on common coil styles, namely, outer diameter coils, inner diameter coils, and linear coils. It provides information on the role of magnetic flux controllers for whole-body and local area mass-heating applications, continuous induction tube welding, seam-annealing inductors, and various induction melting systems, namely, channel-type, crucible-type, and cold crucible systems. The article also describes the benefits of the flux controllers for induction heat treating processes such as single-shot and scanning.
Image
Published: 01 February 2024
Fig. 14 Examples of machined integral quench (MIQ) inductors. (a) Classical MIQ inductor of general cylinder shape. (b) Cross sections revealing water-cooling pockets and quench channels. (c) Irregular geometry inductor conforming to shape of the workpiece. Courtesy of Inductoheat Inc.
More
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005842
EISBN: 978-1-62708-167-2
... parameters selection, production rate, etc.). Special inductors comprise the large family of different designs, including pancake, hairpin, split-return, butterfly, U-shaped, passive-active, clamshell, as well as inductors with doors, doorless, channel, C-core, transverse flux, traveling wave inductors...
Abstract
This article focuses on the frequently encountered causes of induction coil failures and typical failure modes in fabrication of hardening inductors, tooth-by-tooth gear-hardening inductors, clamshell inductors, contactless inductors, split-return inductors, butterfly inductors, and inductors for heating internal surfaces. It discusses the current density distribution and the skin effect, the proximity effect, and crack-propagation specifics. The article also describes selected properties of copper alloys, the electromagnetic edge effect of coil copper turn, and the effect of magnetic flux concentrators on coil life. It also reviews the importance of having appropriate and reliable electrical contacts.
Image
in Operation of Induction Furnaces for Steel and Non-iron Materials
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 14 Channel furnace plant for an aluminum bar foundry, consisting of four 9 ton furnaces, each with two 500 kW inductors. Courtesy of ABP Induction Systems
More
1