Skip Nav Destination
Close Modal
Search Results for
ceramic shell molds
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 248 Search Results for
ceramic shell molds
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005253
EISBN: 978-1-62708-187-0
... foam and investment casting. It discusses the Replicast casting process that involves patternmaking with polystyrene and a ceramic shell mold. The article contains a table that summarizes the differences in the steps of casting a part between the permanent pattern and expendable pattern methods...
Abstract
Depending on the size and application, castings manufactured with the expendable mold process and with expendable patterns increase the tolerance from 1.5 to 3.5 times that of the permanent pattern methods. This article reviews the two major expendable pattern methods, such as lost foam and investment casting. It discusses the Replicast casting process that involves patternmaking with polystyrene and a ceramic shell mold. The article contains a table that summarizes the differences in the steps of casting a part between the permanent pattern and expendable pattern methods.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005255
EISBN: 978-1-62708-187-0
... Abstract This article reviews the pattern materials used in investment casting, which can be loosely grouped into waxes and plastics. The patternmaking process, pattern tooling, and pattern and cluster assembly are described. The article also describes the manufacture of ceramic shell molds...
Abstract
This article reviews the pattern materials used in investment casting, which can be loosely grouped into waxes and plastics. The patternmaking process, pattern tooling, and pattern and cluster assembly are described. The article also describes the manufacture of ceramic shell molds and cores, detailing the binders and other materials used, as well as the formulation and control of slurries. Methods for pattern removal, mold firing, melting, casting, postcasting treatment, and inspection are explained. After presenting design recommendations for investment castings, the article concludes with information on applications and special versions of the investment casting process.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005256
EISBN: 978-1-62708-187-0
... is available from investment casting. Other advantages include: Air emissions are easier to control than with lost foam. The application of a vacuum during casting allows improved fill-out of the mold. The support provided by the ceramic shell during casting allows large, thin shells to be easily...
Abstract
The Replicast process is developed to overcome the formation of lustrous carbon defects and carbon pickup observed in conventional evaporative pattern casting processes. This article provides a discussion on the pattern production, process capabilities, advantages, and limitations of Replicast process.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006519
EISBN: 978-1-62708-207-5
... is critical to the accuracy of the final casting. A number of dimensional changes occur during the investment casting process. When wax is injected into the mold, it contracts upon solidification. When the ceramic shell or solid molds are heated for dewaxing and firing, expansion of the cavity occurs. Finally...
Abstract
Investment casting, in which molten metal is poured into hot molds, allows for the production of aluminum parts with extremely thin sections, knife edges and sharp detail. This article describes the various steps in the investment casting process, including patternmaking and dimensioning, the design and manufacture of shell molds, melting and casting methods, and postcasting operations such as knockout, core removal, and cleaning. It also addresses a wide range of design considerations, discusses casting defects, and provides several design examples.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005242
EISBN: 978-1-62708-187-0
... for metal casting include: Bonded sand or manufactured ceramic aggregates Unbonded aggregates in lost foam casting or vacuum sand molding (see the article “No-Bond Sand Molding” in this Volume) Ceramic shell molds used in investment castings (see the section “Other Expendable Mold Media...
Abstract
This article reviews the basic types of mold aggregates and bonding methods for expendable molds and coremaking. It provides an overview of mold media and the basic types of sands and their properties. The most significant clays used in green sand operations, such as bentonites, are discussed. The article describes the methods of sand bonding with inorganic compounds. It provides a description of resin-bonded sand systems: no-bake binder systems, heat-cured binder systems, and cold box binder systems. The article concludes with a discussion on the media used for expendable molds, namely, ceramic shells and rammed graphite, for casting reactive metals such as titanium or zirconium.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005241
EISBN: 978-1-62708-187-0
... resins; shell molding of sand with a thin resin-bonded shell; no-bond vacuum molding of sand; plaster-mold casting; ceramic-mold casting; rammed graphite molding; and magnetic (no-bond) molding of ferrous shot. The article tabulates a general comparison of casting methods and discusses the basic...
Abstract
Casting can be done with either expendable molds for one-time use or permanent molds for reuse many times. This article lists the various methods used to fabricate expendable molds from permanent patterns. The methods include molding of sand with clay, inorganic binders, or organic resins; shell molding of sand with a thin resin-bonded shell; no-bond vacuum molding of sand; plaster-mold casting; ceramic-mold casting; rammed graphite molding; and magnetic (no-bond) molding of ferrous shot. The article tabulates a general comparison of casting methods and discusses the basic requirements of foundry molds.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003172
EISBN: 978-1-62708-199-3
... Gypsum bond No bond Magnetic molding Vacuum molding Expendable mold processes/Expendable patterns Foamed patterns Evaporative foam casting Replicast process Wax patterns (investment casting) Ethyl silicate bonded block molds Ethyl silicate bonded ceramic shell...
Abstract
This article discusses classification of foundry processes based on the molding medium, such as sand molds, ceramic molds, and metallic molds. Sand molds can be briefly classified into two types: bonded sand molds, and unbonded sand molds. Bonded sand molds include green sand molds, dry sand molds, resin-bonded sand molds, and sodium silicate bonded sand. The article describes the casting processes that use these molds, including the no-bake process, cold box process, hot box process, the CO2 process, lost foam casting process and vacuum molding process. The casting processes that use ceramic molds include investment casting, and plaster casting. Metallic molds are used in permanent mold casting, die casting, semisolid casting, and centrifugal casting.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004024
EISBN: 978-1-62708-185-6
... tooling techniques Table 2 Indirect rapid tooling techniques Process/ property CAFÉ 3D KELTOOL NCC tooling HIP RSP tooling Preform Pattern in negative form RTV transfer mold Electroformed Ni on mandrel Ceramic preforms Preheated ceramic pattern Backing material Composite Al...
Abstract
This article describes two rapid tooling technologies, namely, direct rapid tooling and indirect rapid tooling, for forging-die applications. Commonly used direct rapid tooling technologies include selective laser sintering, three-dimensional printing, and laser-engineered net shape process. The indirect rapid tooling technologies include 3D Keltool process, hot isostatic pressing, rapid solidification process tooling, precision spray forming, and radially constricted consolidation process.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005187
EISBN: 978-1-62708-187-0
... Abstract This article discusses the categories and subcategories of shape casting processes. These include single-use processes such as sand, plaster, ceramic, and graphite molding; essentially unpressurized multiuse processes, such as permanent mold; and high-pressure metal mold methods...
Abstract
This article discusses the categories and subcategories of shape casting processes. These include single-use processes such as sand, plaster, ceramic, and graphite molding; essentially unpressurized multiuse processes, such as permanent mold; and high-pressure metal mold methods, such as die casting, squeeze casting, and semisolid processing. The article contains tables that compare some of the typical capabilities of shape casting processes.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005252
EISBN: 978-1-62708-187-0
... Abstract Shell molding is used for making production quantities of castings that range in weight from a few ounces to approximately 180 kg (400 lb), in both ferrous and nonferrous metals. This article lists the limitations or disadvantages of shell mold casting. It describes the two methods...
Abstract
Shell molding is used for making production quantities of castings that range in weight from a few ounces to approximately 180 kg (400 lb), in both ferrous and nonferrous metals. This article lists the limitations or disadvantages of shell mold casting. It describes the two methods for preparation of resin-sand mixture for shell molding, namely, mixing resin and sand according to conventional dry mixing techniques, and coating the sand with resin. Shaping of shell molds and cores from resin sand mixtures is accomplished in machines. The article discusses the major steps in producing a mold or core and describes the problems most frequently encountered in shell-mold casting. The problems include mold cracking, soft molds, low hot tensile strength of molds, peelback, and mold shift. The article concludes with information on examples that provide some relative cost comparisons between shell molding and green sand molding.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006297
EISBN: 978-1-62708-179-5
.... Suppliers constantly come up with new products that are claimed to be suitable for specific purposes. For instance, there has been long-standing interest in molding with hollow ceramic spheres ( Fig. 3f ), which have extremely low thermal diffusivity and are used as insulating material. Their thermal...
Abstract
Aggregate molding, or sand casting, is the gravity pouring of liquid metal into a mold that is made of a mixture molded against a permanent pattern. This article summarizes the most important materials in the process of sand casting of cast iron, including different types of molding aggregates, clays, water, and additives in green sand, chemically bonded organic resins, and inorganic binders in self-setting, thermosetting, and gas-triggered systems. It discusses three main types of reclamation systems: wet, dry, and thermal. The article concludes with a description of both nonpermanent and permanent mold processes.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005249
EISBN: 978-1-62708-187-0
... as green and dry strength, permeability, and castability. These include cement, ceramic talc, fiberglass, sand, clay, wollastanite, pearlite, and fly ash. Cores are typically made of the same material and by the same process as molds, but cores are sometimes made of other materials, such as shell...
Abstract
This article discusses slurry molding that encompasses two distinct processes: plaster molding and ceramic molding. Plaster mold casting is a specialized casting process used to produce nonferrous castings that have greater dimensional accuracy, smoother surfaces, and more finely reproduced detail. The article describes three generally recognized plaster mold processes, namely, conventional plaster mold casting, the Antioch process, and the foamed plaster process. Ceramic molding techniques are based on processes that employ permanent patterns and fine-grained zircon and calcined, high-alumina mullite slurries for molding. The Shaw process and the proprietary Unicast processes are also discussed.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005258
EISBN: 978-1-62708-187-0
... machine. The horizontally rotated mold is composed of four parts: The shell The casting spout (the end of the mold into which the molten metal is poured) The roller tracks The two end heads Fig. 3 Double-face plate centrifugal casting machine. Source: Ref 2 The mold...
Abstract
Horizontal centrifugal casting is used to cast parts having an axis of revolution. This article discusses the operations of three types of horizontal casting machine: the flanged shaft machine, the horizontal roller-type machine, and the double-face plate machine. It provides information on expendable and permanent molds used for centrifugal casting. The parameters and operations of the horizontal centrifugal casting process, including pouring and solidification, as well as the applications are described.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006485
EISBN: 978-1-62708-207-5
... for the horizontal casting of ingot using DC process principles ( Ref 1 ). In concept, a headered mold turned 90° from vertical is fed with processed alloyed molten metal through a refractory or ceramic insulating panel. A conventional bottom block is used to start casting, but thereafter, ingot is drawn from...
Abstract
Ingot casting is the vital conduit between molten metal provided by primary production and recycling, and the manufacture of aluminum and aluminum alloy products. This article discusses various ingot forms, such as remelt ingot, billets, ingots for rolling, fabricating ingot, and particle ingot and powder. It describes the molten metal processing and ingot casting process in terms of open-mold casting and direct chill process. The article examines the continuous processes that provide commercial alternatives to conventional ingot casting. It reviews the postsolidification processes in terms of stress relief, homogenization, and scalping. The article concludes with a discussion on safety limited to ingot casting.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005286
EISBN: 978-1-62708-187-0
... DC process principles ( Ref 1 ). In concept, a headered mold turned 90° from vertical is fed with processed alloyed molten metal through a refractory or ceramic insulating panel. A conventional bottom block is used to start casting, but thereafter, ingot is drawn from the mold at controlled rates...
Abstract
Ingot casting is the vital conduit between molten metal provided by primary production and recycling and the manufacture of aluminum and aluminum alloy products. A number of ingot casting processes have been developed to ensure the soundness, integrity, and homogeneity required by downstream manufacturing processes. This article starts with a review of the different forms of ingot and the molten-metal processing techniques involved in ingot casting. It then describes the open-mold casting and direct chill (DC) ingot casting processes. The process variations and solidification in the DC process are summarized. The article explains continuous processes, namely, twin-roll strip casting, slab casting, and wheel-belt processes. It concludes with information on postsolidification processes, including stress relief and scalping, and a discussion of safety practices for ingot casting.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005287
EISBN: 978-1-62708-187-0
..., shell mold casting, plaster casting, investment casting, permanent mold casting, squeeze casting, semisolid forming, centrifugal casting, and pressure die casting. The article presents several different factors on which the selection of a casting process depends. It discusses gating and risering...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article provides an overview of the common methods of aluminum shape casting. These include gravity casting, die casting, sand casting, lost foam casting, shell mold casting, plaster casting, investment casting, permanent mold casting, squeeze casting, semisolid forming, centrifugal casting, and pressure die casting. The article presents several different factors on which the selection of a casting process depends. It discusses gating and risering principles in casting. The article concludes with information on premium engineered castings that provide higher levels of quality and reliability than in conventionally produced castings.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006508
EISBN: 978-1-62708-207-5
... casting is a sand casting process that uses an expandable polystyrene (EPS) pattern that embodies the positive shape of the part to be cast ( Fig. 1 ). The EPS patterns are dipped in ceramic slurry, dried, inserted, and packed with sand in the casting mold ( Fig. 2 ). Molten aluminum then is poured...
Abstract
Lost foam casting is a sand casting process in which the mold consists of an evaporative polystyrene foam pattern embedded in sand. It is especially well suited for making complex parts with convoluted features such as engine blocks, transmission cases, and cylinder heads. This article describes the lost foam casting process and its primary advantages, including the elimination of flash and parting lines, the relative ease of prototyping with foam, and the ability to incorporate multiple metals, whether in sections or layers, through sequential pours. It illustrates an entire process cycle from mold filling to fusion, cooling, and part ejection. The article also provides information on casting quality, discussing dimensional tolerances, fold defects, and porosity.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.9781627082075
EISBN: 978-1-62708-207-5
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009022
EISBN: 978-1-62708-187-0
.... This article discusses the design problems and solutions of various castings, such as sand, shell mold, permanent mold, and investment castings, with illustrations. castings investment castings permanent mold castings sand castings premature freezing molten metal shell mold castings IN MANY...
Abstract
In many castings, functional requirements dictate that walls be uniform or nearly uniform in thickness. Many problems in producing castings having walls of uniform thickness are associated with the premature freezing of molten metal before all parts of the mold cavity have been filled. This article discusses the design problems and solutions of various castings, such as sand, shell mold, permanent mold, and investment castings, with illustrations.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005306
EISBN: 978-1-62708-187-0
.... Of necessity, the casting mold systems must be relatively inert to molten titanium. Proprietary lost wax ceramic shell systems were developed by the various foundries engaged in titanium casting. Usually, the face coats of the ceramic shells are made with the proprietary coatings, and conventional refractory...
1