1-20 of 443

Search Results for cement carbides

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

By A.T. Santhanam, P. Tierney
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002124
EISBN: 978-1-62708-188-7
... Abstract This article discusses the manufacturing steps and compositions of cemented carbides, as well as their microstructure, classifications, applications, and physical and mechanical properties. It provides information on new tool geometries, tailored substrates, and the application of thin...
Book Chapter

By A.T. Santhanam, P. Tierney, J.L. Hunt
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001104
EISBN: 978-1-62708-162-7
... Abstract Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a soft and ductile metal binder. The performance of cemented carbide as a cutting tool lies between that of tool steel and cermets...
Book Chapter

By A.T. Santhanam
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003797
EISBN: 978-1-62708-177-1
... has a value of 0.0000 V. Reactions with more than one voltage indicate that results have not been reconciled. Parenthetical materials not needed to balance reactions are catalysts. electrochemical series potential value standard hydrogen electrode CEMENTED CARBIDES belong to a class...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003152
EISBN: 978-1-62708-199-3
... Abstract Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a ductile metal binder. Cermet refers to a composite of a ceramic material with a metallic binder. This article discusses...
Book Chapter

Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003838
EISBN: 978-1-62708-183-2
... Abstract Cemented carbides are extremely important in corrosion conditions in which high hardness, wear resistance, or abrasion resistance is required. This article describes the effect of binder composition and carbide addition on corrosion behavior of cemented carbides. It lists the examples...
Book Chapter

Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000626
EISBN: 978-1-62708-181-8
... Abstract This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of one specific type of cemented carbide, tungsten carbide. It also assists in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006064
EISBN: 978-1-62708-175-7
... Abstract Cemented carbide is, in its simplest form, a metal-matrix composite of tungsten carbide particles in a cobalt matrix. This article describes the microstructure, physical, and mechanical properties of cemented carbides. The properties discussed include thermal conductivity, magnetic...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006054
EISBN: 978-1-62708-175-7
... Abstract This article describes the secondary operations for cemented carbide parts, namely, diamond grinding, honing, electrical discharge machining, and brazing after sintering to achieve desired results, such as specified size, shape, edge condition, and surface finish. brazing...
Book Chapter

By Gary Runyon, Binky Sargent
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006056
EISBN: 978-1-62708-175-7
... Abstract Quality control of cemented carbides includes the evaluation of physical and chemical properties of constituent raw material powders, powder blends/formulations, green compacts, and fully dense finished product. This article provides a summary of the underlying principles and size...
Book Chapter

By Xiaohui Wang
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006418
EISBN: 978-1-62708-192-4
... Abstract Cemented carbides, best known for their superior wear resistance, have a range of industrial uses more diverse than that of any other powder metallurgy product including metalworking and mining tools and wear-resistant components. This article discusses raw materials and manufacturing...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006583
EISBN: 978-1-62708-290-7
... Abstract Tungsten, molybdenum, and cemented carbide parts can be produced using several additive manufacturing technologies. This article classifies the most relevant technologies into two groups based on the raw materials used: powder-bed methods, such as selective laser melting, electron beam...
Image
Published: 01 January 1989
Fig. 16 Wear comparison between cemented carbide, coated carbide, and cermet cutting tools in the threading of alloy steel. Machining parameters: cutting speed, 130 m/min (430 sfm); six passes with coolant. Workpiece: 4140 steel. Pitch: 6 threads per 25 mm (1 in.) More
Image
Published: 01 January 1989
Fig. 9 Built-up edge on a cemented carbide tool. The built-up edge was produced during the low-speed machining of a nickel-base alloy. 20× More
Image
Published: 01 January 1989
Fig. 10 Thermal cracks in a cemented carbide insert. The thermal cracks are perpendicular to the cutting edge, and the mechanical cracks are parallel to the cutting edge. 15× More
Image
Published: 01 January 1989
Fig. 26 An example of PVD TiN coating on a sharp cemented carbide tool. Etched with Murakami's reagent for 3 s. 1140× More
Image
Published: 01 January 1989
Fig. 4 Comparison of flank wear for two cermets and a cemented carbide when turning 4340 steel. Source: Ref 6 More
Image
Published: 01 January 1989
Fig. 13 Wear comparison between cemented carbide and cermet cutting tools in grooving of 4135 alloy steel More
Image
Published: 01 December 2004
Fig. 5 Typical scanning electron micrographs of a sintered WC-12Co cemented carbide (hard metal used in metal cutting operations). (a) Secondary electron image of the surface of a worn drill (strong topographic contrast). 60×. (b) Secondary electron image of the fracture surface in a fracture More
Image
Published: 30 September 2015
Fig. 3 Typical time-temperature cycle for vacuum sintering of cemented carbide. Source: Ref 7 More
Image
Published: 30 September 2015
Fig. 7 Typical sinter-HIP cycle for consolidation of cemented carbide. Source: Ref 19 More