1-9 of 9 Search Results for

cellular automaton models

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005432
EISBN: 978-1-62708-196-2
..., distributing nuclei of recrystallized grains, growing the recrystallized grains, and updating the dislocation density. The article concludes with information on the developments in CA simulations. cellular automaton model static recrystallization dynamic recrystallization microstructure dislocation...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004027
EISBN: 978-1-62708-185-6
... are easily missed. Fig. 10 Microstructural evolution during recrystallization simulated using a hybrid Monte Carlo-Potts cellular automaton model; the white grains are recrystallized. Source: Ref 23 Unlike the other types of model, the phase-field method is based on structural and...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005236
EISBN: 978-1-62708-187-0
... and applications of phase field method and cellular automaton method for modeling the direct evolution of structure at the intermediate length scales, where transport phenomena govern the spatial and temporal evolution of the structure that involves nucleation and growth. casting cellular...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005406
EISBN: 978-1-62708-196-2
... Abstract This article focuses on the intermediate length scales, where transport phenomena govern the spatial and temporal evolution of a structure. It presents the cellular automaton (CA) and phase field (PF) methods that represent the state of the art for modeling macrostructure and...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005428
EISBN: 978-1-62708-196-2
... Abstract The misorientation of a boundary of a growing grain is defined not only by its crystallography but also by the crystallography of the grain into which it is growing. This article focuses on the Monte Carlo Potts model that is typically used to model grain growth, Zener-Smith pinning...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005459
EISBN: 978-1-62708-196-2
...-called JMAK (Avrami) models, topological models, and last, mesoscale physics-based models. Additional related information on the general formulation of models for microstructure evolution is contained in the articles “Models of Recrystallization,”  “Cellular Automaton Models of Recrystallization...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005425
EISBN: 978-1-62708-196-2
... mechanism-based models, such as those designed to predict phase equilibria (e.g., Calphad), recrystallization and grain growth (Monte Carlo and cellular-automaton techniques), and precipitation and solidification problems (e.g., phase-field methods). The successful implementation of these newer techniques...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009002
EISBN: 978-1-62708-185-6
... boundaries by the second phase. The stress-strain (flow) curves that are measured under hot working conditions are a function of the predominant dynamic softening mechanism. Cellular automata (also sometimes referred to as cellular automaton) is a numerical procedure used to model a...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
... recrystallization or nonparabolic grain growth (e.g., Fig. 5 ). Two principal types of mechanism-based approaches are those based on cellular automaton (primarily used for recrystallization problems) and the Monte-Carlo/Potts formalism (used for both recrystallization and grain-growth problems). Both of these...