Skip Nav Destination
Close Modal
By
Kanchan M. Kelkar, Suhas V. Patankar, Alec Mitchell, Ramesh S. Minisandram, Ashish D. Patel
Search Results for
cellular automaton model
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 21 Search Results for
cellular automaton model
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005432
EISBN: 978-1-62708-196-2
..., distributing nuclei of recrystallized grains, growing the recrystallized grains, and updating the dislocation density. The article concludes with information on the developments in CA simulations. cellular automaton model static recrystallization dynamic recrystallization microstructure dislocation...
Abstract
This article examines how cellular automaton (CA) can be applied to the simulation of static and dynamic recrystallization. It describes the steps involved in the CA simulation of recrystallization. These include defining the CA framework, generating the initial microstructure, distributing nuclei of recrystallized grains, growing the recrystallized grains, and updating the dislocation density. The article concludes with information on the developments in CA simulations.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003729
EISBN: 978-1-62708-177-1
... account of the general capabilities of the various models that can generate microstructure maps and thus transform the computer into a dynamic microscope. These include standard transport models, phase-field models, Monte Carlo models, and cellular automaton models. cellular automaton models...
Abstract
Computational modeling assists in addressing the issues of solid/liquid interface dynamics at the microlevel. It also helps to visualize the grain length scale, fraction of phases, or even microstructure transitions through microstructure maps. This article provides a detailed account of the general capabilities of the various models that can generate microstructure maps and thus transform the computer into a dynamic microscope. These include standard transport models, phase-field models, Monte Carlo models, and cellular automaton models.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006314
EISBN: 978-1-62708-179-5
... include the dendrite growth models and the cooperative eutectic growth models. The article provides some solutions using numerical models to simulate the kinetics of microstructure formation in cast iron. It concludes with a discussion on cellular automaton (CA) technique that can handle complex topology...
Abstract
The microstructure that develops during the solidification stage of cast iron largely influences the subsequent solid-state transformations and mechanical properties of the cast components. This article provides a brief introduction of methods that can be used for simulating the solidification microstructure of cast iron. Analytical as well as numerical models describing solidification phenomena at both macroscopic and microscopic scales are presented. The article introduces macroscopic transport equations and presents analytical microscopic models for solidification. These models include the dendrite growth models and the cooperative eutectic growth models. The article provides some solutions using numerical models to simulate the kinetics of microstructure formation in cast iron. It concludes with a discussion on cellular automaton (CA) technique that can handle complex topology changes and reproduce most of the solidification microstructure features observed experimentally.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005236
EISBN: 978-1-62708-187-0
... the principles and applications of the phase field method and the cellular automaton method for modeling the direct evolution of structure at the intermediate length scales, where transport phenomena govern the spatial and temporal evolution of the structure that involves nucleation and growth. casting...
Abstract
Modeling of structure formation in casting of alloys involves several length scales, ranging from the atomic level to macroscopic scale. Intermediate length scales are used to define the microstructure of the growing phases and the grain structure. This article discusses the principles and applications of the phase field method and the cellular automaton method for modeling the direct evolution of structure at the intermediate length scales, where transport phenomena govern the spatial and temporal evolution of the structure that involves nucleation and growth.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005406
EISBN: 978-1-62708-196-2
...Abstract Abstract This article focuses on the intermediate length scales, where transport phenomena govern the spatial and temporal evolution of a structure. It presents the cellular automaton (CA) and phase field (PF) methods that represent the state of the art for modeling macrostructure...
Abstract
This article focuses on the intermediate length scales, where transport phenomena govern the spatial and temporal evolution of a structure. It presents the cellular automaton (CA) and phase field (PF) methods that represent the state of the art for modeling macrostructure and microstructure. The article describes the principles of the PF method and provides information on the applications of the PF method. The CA model is introduced as a computationally efficient method to predict grain structures in castings using the mesoscopic scale of individual grains. The article discusses the coupling of the CA to macroscopic calculation of heat, flow, and mass transfers in castings and applications to realistic casting conditions.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005511
EISBN: 978-1-62708-197-9
... to predict the microstructural evolution in a Ni-Al-Cr γ+β/γ diffusion couple. Finally, in example 8, thermodynamic modeling is integrated with a microscopic and cellular automaton model to simulate the microstructure and microsegregation of aluminum alloys during solidification. Example 5: Prediction...
Abstract
This article focuses on the industrial applications of phase diagrams. It presents examples to illustrate how a multicomponent phase diagram calculation can be readily useful for industrial applications. The article demonstrates how the integration of a phase diagram calculation with kinetic and microstructural evolution models greatly enhances the power of the CALPHAD approach in materials design and processing development. It also discusses the limitations of the CALPHAD approach.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005522
EISBN: 978-1-62708-197-9
... stratifies in the liquid ahead of the growth front ( Ref 10 , 11 ). The indium concentration stratifications and the growth front predicted by the cellular automaton finite-element (CAFE) model are illustrated in Fig. 3(b) ( Ref 12 ). Solutal convection during directional solidification is shown in Fig...
Abstract
For a wide range of new or better products, solidification processing of metallic materials from the melt is a step of uppermost importance in the industrial production chain. This article discusses the casting and solidification of molten metallic alloy along with the application of low-gravity platforms and facilities for solidification processing. It provides a description of dendritic growth studies and electromagnetic levitation. The article concludes with information on the in situ and real-time monitoring of solidification processing.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004027
EISBN: 978-1-62708-185-6
... for these complex models, where errors are easily missed. Fig. 10 Microstructural evolution during recrystallization simulated using a hybrid Monte Carlo-Potts cellular automaton model; the white grains are recrystallized. Source: Ref 23 Unlike the other types of model, the phase-field method...
Abstract
The systematic study of microstructural evolution during deformation under hot working conditions is important in controlling processing variables to achieve dimensional accuracy. This article explains the microstructural features that need to be modeled and provides an outline of the principles and achievements of each of the various microstructural models, including black-box modeling, gray-box modeling, white-box modeling, and hybrid modeling.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005501
EISBN: 978-1-62708-197-9
... size and secondary dendrite arm spacing, can be calculated based on the chemistry and cooling conditions. Some examples using such deterministic micromodeling are provided in a later section. Cellular Automaton Models Cellular automaton (CA) models are algorithms that describe the discrete...
Abstract
This article reviews the topic of computational thermodynamics and introduces the calculation of solidification paths for casting alloys. It discusses the calculation of thermophysical properties and the fundamentals of the modeling of solidification processes. The article describes several commonly used microstructure simulation methods and presents ductile iron casting as an example to demonstrate the ability of microstructure simulation. The predictions for the major defects of casting, such as porosity, hot tearing, and macrosegregation, are highlighted. Finally, several industry applications are presented.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006327
EISBN: 978-1-62708-179-5
... 62 ). Fig. 23 Fraction of primary austenite vs. casting wall thickness. Source: Ref 62 Burbelko et al. ( Ref 63 ) also reported that a cellular automaton finite differences (CA-FD) model can be successfully used for studies of the primary austenite and of globular eutectic grains...
Abstract
From the point of view of economics and ecology, thin-wall ductile iron (TWDI) castings can compete in terms of mechanical properties with the light castings made of aluminum alloys. This article discusses the effect of technological factors on the cooling rate and physicochemical state of the liquid metal for preparing thin-wall castings with good mechanical properties and performance while avoiding casting defects. It describes a variety of defects that may appear during the production of TWDI castings, such as casting skin anomalies (e.g., flake graphite, graphite segregation), graphite clusters, exploded graphite, slag inclusions, shrinkage porosity, eutectic chill and secondary carbides, and cold shuts. The article reviews the tensile, fatigue, impact, and wear properties of TWDI castings. It provides information on the production and applications of TWDI castings.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009002
EISBN: 978-1-62708-185-6
... subsequently. Cellular Automata (CA) Cellular automata (also sometimes referred to as cellular automaton) is a numerical procedure used to model a number of metallurgical processes based on nucleation and growth or growth alone. These include static and dynamic recrystallization, precipitation...
Abstract
This article reviews the general aspects of microstructure evolution during thermomechanical processing. The effect of thermomechanical processing on microstructure evolution is summarized to provide insight into the aspect of process design. The article provides information on hot working and key processes that control microstructure evolution: dynamic recovery, static recovery, recrystallization, and grain growth. Some of the key phenomenological descriptions of plastic flow and microstructure evolution are also summarized. The article concludes with a discussion on the modeling of microstructure evolution.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005521
EISBN: 978-1-62708-197-9
.... It permits direct modeling of the grain structure. Direct Modeling of the Grain Structure Model Formulation Direct modeling of the grain structure presented in this section is based on coupling a cellular automaton (CA) method and a finite-element (FE) method. Other variants of a CA method have...
Abstract
This article discusses the three different modeling approaches for grain structures formed during solidification of metallic alloys: direct modeling of dendritic structure, direct modeling of grain structure, and indirect modeling of grain structure. The main construction bases, the scale at which it applies, and the mathematical background are presented for each modeling approach. The article concludes with a table that presents a comparison of the main inputs/outputs, approximations, numerical methods, kinetics laws, and applications for the three approaches to modeling of dendritic grain solidification.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005459
EISBN: 978-1-62708-196-2
... JMAK (Avrami) models, topological models, and last, mesoscale physics-based models. Additional related information on the general formulation of models for microstructure evolution is contained in the articles “Models of Recrystallization,” “Cellular Automaton Models of Recrystallization...
Abstract
This article summarizes the general features of microstructure evolution during the thermomechanical processing (TMP) of nickel-base superalloys and the challenges posed by the modeling of such phenomena. It describes the fundamentals and implementations of various modeling methodologies. These include JMAK (Avrami) models, topological models, and mesoscale physics-based models.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005425
EISBN: 978-1-62708-196-2
... of mechanism-based models, such as those designed to predict phase equilibria (e.g., Calphad), recrystallization and grain growth (Monte Carlo and cellular-automaton techniques), and precipitation and solidification problems (e.g., phase-field methods). The successful implementation of these newer techniques...
Abstract
This article provides a brief historical perspective, a classification of metallurgical processes, basic model development efforts, and an overview of the potential future directions for the modeling of metals processing. It describes the classification of material behavior models, which can be grouped broadly into three classes: statistical, phenomenological, and mechanistic models. The article also presents an overview of the potential directions for the modeling of metals processing.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005518
EISBN: 978-1-62708-197-9
... method have been compared with electron backscatter diffraction measurements and showed good agreement ( Ref 49 , 50 ). Fig. 2 Grain structure in a directionally solidified superalloy turbine blade simulated with the cellular automaton method. The <100> pole figures are displayed...
Abstract
This article reviews the various aspects of the simulation of solidification microstructures and grain textures. It describes the grain structures and morphology of dendrites or eutectics that compose the internal structure of the grains. A particular emphasis has been put on the simulation of defects related to grain textures and microstructures. The article provides information on the application of the most important simulation approaches and the status of numerical simulation.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005520
EISBN: 978-1-62708-197-9
... Huang et al. ( Ref 75 ) also allowed a random distribution of the location of nuclei for both pores and grains. They modeled the nucleation and growth of both grains and pores during the solidification of A356 alloys using a two-dimensional cellular automata (CA) model. Their mechanism for grain...
Abstract
There is a need for models that predict the percentage and size of porosity formed during solidification in order to effectively predict mechanical properties. This article provides an overview of equations that govern pore formation. It reviews the four classes of models, highlighting both the benefits and drawbacks of each class. These classes include criteria functions, analytical models, continuum models, and kinetic models. The article also tabulates the criteria functions for porosity prediction.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
... recrystallization or nonparabolic grain growth (e.g., Fig. 5 ). Two principal types of mechanism-based approaches are those based on cellular automaton (primarily used for recrystallization problems) and the Monte-Carlo/Potts formalism (used for both recrystallization and grain-growth problems). Both...
Abstract
Metalworking is one of the three major technologies used to fabricate metal products. This article tabulates the classification of metal forming processes. It discusses different types of metalworking equipment, including rolling mills, ring-rolling machines, and thread-rolling and surface-rolling machines. The article outlines the significant characteristics of pressing-type machines: load and energy characteristics, time-related characteristics, and accuracy characteristics. It summarizes different specialized processes such as advanced roll-forming methods, equal-channel angular extrusion, incremental forging, and microforming. The article describes the thermomechanical processing of nickel- and titanium-base alloys and concludes with information on the advancements in process simulation.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005428
EISBN: 978-1-62708-196-2
...Abstract Abstract The misorientation of a boundary of a growing grain is defined not only by its crystallography but also by the crystallography of the grain into which it is growing. This article focuses on the Monte Carlo Potts model that is typically used to model grain growth, Zener-Smith...
Abstract
The misorientation of a boundary of a growing grain is defined not only by its crystallography but also by the crystallography of the grain into which it is growing. This article focuses on the Monte Carlo Potts model that is typically used to model grain growth, Zener-Smith pinning, abnormal grain growth, and recrystallization. It introduces the basics of the model, providing details of the dynamics, simulation variables, boundary energy, boundary mobility, pinning systems, and stored energy. The article explains how to incorporate experimental parameters and how to validate the model by comparing the observed behavior quantitatively with theory. The industrial applications of the model are also discussed. The article also provides a wide selection of the algorithms for implementing the Potts model, such as boundary-site models, n -fold way models, and parallel models, which are needed to simulate large-scale industrial applications.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005401
EISBN: 978-1-62708-196-2
... 33 ). A second approach, which is just emerging, comprises the application of modeling techniques such as the Monte Carlo (MC) and cellular automata (CA) techniques ( Ref 34 , Ref 35 , Ref 36 ). The CA method ( Ref 35 , 36 ) has been applied to treat dynamic recrystallization. The specific method...
Abstract
The modeling and simulation of texture evolution for titanium alloys is often tightly coupled to microstructure evolution. This article focuses on a number of problems for titanium alloys in which such coupling is critical in the development of quantitative models. It discusses the phase equilibria, crystallography, and deformation behavior of titanium and titanium alloys. The article describes the modeling and simulation of recrystallization and grain growth of single-phase beta and single-phase alpha titanium. The deformation- and transformation-texture evolution of two-phase (alpha/beta) titanium alloys are also discussed.
Book Chapter
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005510
EISBN: 978-1-62708-197-9
..., and MeltFlow-ESR ( Ref 51 , 64 , 67 ) for the analysis of the ESR process for superalloys and steels. The results from some of these models have also been used in conjunction with solidification models (largely based on the cellular automata techniques) to predict the growth of the columnar dendritic zone...
Abstract
This article provides an overview of the studies on computational modeling of the vacuum arc remelting (VAR) and electroslag remelting (ESR) processes. These models involve the axisymmetric analysis of the electromagnetic, flow, heat-transfer, and phase-change phenomena to predict the pool shape and thermal history of an ingot using two-dimensional axisymmetric models for VAR and ESR. Analysis of segregation of alloying elements during solidification that gives rise to macrolevel compositional nonuniformity in titanium alloy ingots is also described. The article discusses the important features of the control-volume-based computational method to review the unique aspects of the processes. Measurement of the properties of alloys and slags is explained and an analysis of the process variants for improving the predictive accuracy of the models is presented.