Skip Nav Destination
Close Modal
Search Results for
cellular analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 209 Search Results for
cellular analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006892
EISBN: 978-1-62708-392-8
... for a suitable biomaterial, currently used biomaterials, and cells and cellular structures. Additionally, applications of microvalve jetting in biomedical engineering are presented, which include cellular and RNA analysis, high-throughput drug screening, and tissue engineering. biomaterials cellular...
Abstract
Microvalve jetting, with its advantages of low cost, ease of operation, high printing speed, and ability to process living cells with high viability, has been primarily used for fabricating high-throughput drug-screening models, in vitro cellular structures for fundamental cell biology research, and cell-laden structures for regenerating tissues or organs in the human body after disease or trauma. This article provides an overview of microvalve jetting of biomaterials, including operational parameters. The jetting technologies covered are inkjet printing, microvalve jetting, and laser-assisted jetting. The parameters covered include nozzle size (nozzle inner diameter), pneumatic pressure, valve-opening time, and printing speed of microvalve jetting. Subsequently, the article discusses biomaterials for microvalve jetting in terms of biomaterial definition, required properties for a suitable biomaterial, currently used biomaterials, and cells and cellular structures. Additionally, applications of microvalve jetting in biomedical engineering are presented, which include cellular and RNA analysis, high-throughput drug screening, and tissue engineering.
Image
Published: 01 January 1986
Fig. 35 Analysis of a magnetostrictive alloy by SAM. (a) Secondary electron detector image of a cellular region on a transverse section of directionally solidified Terfenol alloy; original magnification, 500×. (b) Iron Auger map of same area, 250 × 250 pixels, E P = 46 eV, E B = 70 eV
More
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006951
EISBN: 978-1-62708-439-0
... below 0.75 mm (0.03 in.). Source: Ref 73 Analysis Architected cellular materials represent one of the most exciting aspects of design for AM. In fact, the advent of AM has unlocked significant possibilities beyond the honeycomb and foam paradigms that existed prior to its arrival...
Abstract
This article provides an introduction to architected cellular materials, their design, fabrication, and application domain. It discusses design decisions involving the selection, sizing, and spatial distribution of the unit cell, property-scaling relationships, and the integration of cells within an external boundary. It describes how manufacturing constraints influence achievable feature resolution, dimensional accuracy, properties, and defects. It also discusses the mechanical behavior of architected cellular materials and the role of additive manufacturing in their fabrication.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005432
EISBN: 978-1-62708-196-2
... Abstract This article examines how cellular automaton (CA) can be applied to the simulation of static and dynamic recrystallization. It describes the steps involved in the CA simulation of recrystallization. These include defining the CA framework, generating the initial microstructure...
Abstract
This article examines how cellular automaton (CA) can be applied to the simulation of static and dynamic recrystallization. It describes the steps involved in the CA simulation of recrystallization. These include defining the CA framework, generating the initial microstructure, distributing nuclei of recrystallized grains, growing the recrystallized grains, and updating the dislocation density. The article concludes with information on the developments in CA simulations.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003724
EISBN: 978-1-62708-177-1
...-silicon alloy. Etchant: 60% HCl, 30% HNO 3 , 5%HF, 5%H 2 O Fig. 4 Microstructure (electron micrograph) of a preferentially etched surface of a pure aluminum sample (99.99% Al). Etchant not reported. Source: Ref 2 Fig. 5 Cellular dislocation arrangement in direct chill cast 99.0% Al...
Abstract
This article provides information on four different length scales at which surface morphology can be viewed: macro, meso, micro and nanoscale. Elementary thermodynamics demonstrates that a liquid cannot solidify unless some undercooling below the equilibrium (melting) temperature occurs. The article details five types of solidification undercooling, namely, kinetic, thermal, constitutional (solutal), curvature, and pressure undercooling. It explains the types of nucleation which occur in the melt during solidification. The effects of local instabilities at the solid/liquid interface during growth are illustrated. The article also describes the solidification structures of pure metals, solid solutions, eutectics, peritectics, and monotectics.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006860
EISBN: 978-1-62708-392-8
... Abstract The use of 3D bioprinting techniques has contributed to the development of novel cellular patterns and constructs in vitro, ex vivo, and even in vivo. There are three main bioprinting techniques: inkjet printing, extrusion printing (also known as bioextrusion), laser-induced forward...
Abstract
The use of 3D bioprinting techniques has contributed to the development of novel cellular patterns and constructs in vitro, ex vivo, and even in vivo. There are three main bioprinting techniques: inkjet printing, extrusion printing (also known as bioextrusion), laser-induced forward transfer (LIFT) printing, which is also known as modified LIFT printing, matrix-assisted pulsed-laser evaporation direct write, and laser-based printing (laser-assisted bioprinting, or biological laser printing). This article provides an overview of the LIFT process, including the LIFT process introduction, different implementations, jetting dynamics, printability phase diagrams, and printing process simulations. Additionally, materials involved during LIFT are introduced in terms of bioink materials and energy-absorbing layer materials. Also, the printing of single cells and 2D and 3D constructs is introduced, showcasing the current state of the art with the ultimate goal for tissue- and organ-printing applications.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009002
EISBN: 978-1-62708-185-6
... of microstructure evolution. cellular automata dynamic recovery grain growth hot working microstructure evolution microstructure evolution modeling Monte-Carlo techniques plastic flow recrystallization static recovery texture evolution models thermomechanical processing IN PROCESS DESIGN...
Abstract
This article reviews the general aspects of microstructure evolution during thermomechanical processing. The effect of thermomechanical processing on microstructure evolution is summarized to provide insight into the aspect of process design. The article provides information on hot working and key processes that control microstructure evolution: dynamic recovery, static recovery, recrystallization, and grain growth. Some of the key phenomenological descriptions of plastic flow and microstructure evolution are also summarized. The article concludes with a discussion on the modeling of microstructure evolution.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005226
EISBN: 978-1-62708-187-0
... Growth At intermediate growth velocities, cellular and/or dendritic growth remain common occurrences in rapidly solidified material. An example of an analysis assuming local equilibrium is given by Ref 7 , which computes how the dendrite tip radius, r , changes with dendrite tip velocity, V...
Abstract
Rapid solidification is a tool for modifying the microstructure of alloys that are obtained by ordinary casting. This article describes the fundamentals of the four microstructural changes, namely, microsegregation, identity of the primary phase, identity of the secondary phase, and the formation of noncrystalline phases. It considers three factors to understand the fundamentals of these changes: heat flow, thermodynamic constraints/conditions at the liquid-solid interfaces, and diffusional kinetics/microsegregation. These factors are described in detail.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006311
EISBN: 978-1-62708-179-5
... is a function of chemical analysis, temperature, and holding time in the liquid state. X-ray analysis on liquid cast iron demonstrated that, for a Fe-4.1%C-1%Si alloy, the size of undissolved graphite immediately after melting was 36 to 38 nm ( Ref 1 ). It decreased by half after 5 to 6 h holding at 1220 °C...
Abstract
Solidification processing is one of the oldest manufacturing processes, because it is the principal component of metal casting processing. This article discusses the fundamentals of solidification of cast iron. Undercooling is a basic condition required for solidification. The article describes various undercooling methods, including kinetic undercooling, thermal undercooling, constitutional undercooling, and pressure undercooling. For solidification to occur, nuclei must form in the liquid. The article discusses the various types of nucleation: homogeneous nucleation, heterogeneous nucleation, and dynamic nucleation. It reviews the classification of eutectics based on their growth mechanism: cooperative growth and divorced growth. The article concludes with a discussion on the solidification structures of peritectics.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000620
EISBN: 978-1-62708-181-8
... alloys connecting rods fatigue striations fractograph shrinkage cavities shrinkage porosity Fig. 921 A portion of a fractured carrier tray and sand cast of an aluminum alloy intended to be 356.0-T6. Chemical analysis revealed that the copper and zinc contents were of an order of magnitude...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of cast aluminum alloys and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the brittle fracture, microvoid coalescence, fatigue striations, and microstructure of these alloys. The components considered include fractured sand-cast carrier trays, broken extension-housing yokes, helicopter tail-rotor drive assemblies, fractured bell-crank fittings, chain-hoist hooks, and automotive connecting rods.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006495
EISBN: 978-1-62708-207-5
.... The article concludes with information on the applications of highly porous metal structures. aluminum foams gas segregation foaming investment casting mechanical properties powder metallurgy solidification porosity FOAMS AND OTHER HIGHLY POROUS MATERIALS with cellular structure find...
Abstract
This article describes manufacturing procedures that produce aluminum foams and have since become industrially important and successful. It discusses the foaming of melts by blowing agents and foaming of melts by gas injection. The article focuses on aluminum foams based on the Foaminal technology, because those foams dominate the technical applications of aluminum foams. It also discusses the mechanical properties of metal foams, such as general compression behavior, elastic behavior, strain-rate sensitivity, tensile behavior, ductility, fatigue, and mechanical damping. The article concludes with information on the applications of highly porous metal structures.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006225
EISBN: 978-1-62708-163-4
... consisting of a thorough mixture of α and β phases. A phase analysis at room temperature is representative of the condition of the alloy in the solid α + β region: % β phase = d e d f = 50 − 1 99 − 1 × 100 ≈ 50 wt % This amount of β phase (50 wt%) is the sum...
Abstract
This article begins with a schematic illustration of a eutectic system in which the two components of the system have the same crystal structure. Eutectic systems form when alloying additions cause a lowering of the liquidus lines from both melting points of the pure elements. The article describes the aluminum-silicon eutectic system and the lead-tin eutectic system. It discusses eutectic morphologies in terms of lamellar and fibrous eutectics, regular and irregular eutectics, and the interpretation of eutectic microstructures. The article examines the solidification of a binary alloy of exactly eutectic composition. It concludes with a discussion on terminal solid solutions.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006093
EISBN: 978-1-62708-175-7
... Abstract Cellular or foam structures can be described by means of two broader cases: foams in which the pores are all connected to each other and with the environment (open-pore foams) and foams in which every single pore is completely enclosed by the matrix (closed-pore foams). This article...
Abstract
Cellular or foam structures can be described by means of two broader cases: foams in which the pores are all connected to each other and with the environment (open-pore foams) and foams in which every single pore is completely enclosed by the matrix (closed-pore foams). This article describes the four process groups for the production of open- and closed-pore metal foams. It discusses the principles of the foaminal process with the description of various foaming agents, solidified metal foam, and geometries and derived structures of metal foams. The use of syntactic metal foam in various fields is included. The article reviews the mechanical properties of closed-pore metal foams, details the machining and joining procedures of the metal foams, and presents the applications of the metal foam.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003731
EISBN: 978-1-62708-177-1
.... It describes two precipitation modes, namely, general or continuous precipitation and cellular or discontinuous precipitation. The article also provides information on the precipitation sequences in aluminum alloys. aluminum alloys cellular precipitation continuous precipitation heterogeneous...
Abstract
Precipitation reactions occur in many different alloy systems when one phase transforms into a mixed-phase system as a result of cooling from high temperatures. This article discusses the homogenous and heterogeneous nucleation and growth of coherent and semicoherent precipitates. It describes two precipitation modes, namely, general or continuous precipitation and cellular or discontinuous precipitation. The article also provides information on the precipitation sequences in aluminum alloys.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005666
EISBN: 978-1-62708-198-6
... to pharmacologically treat implant debris-induced inflammation and hypersensitivity by specifically interrupting the cellular mechanisms of debris-induced inflammatory responses that lead to aseptic osteolysis. Debris-Induced Systemic Effects Analysis of organs and tissues obtained postmortem from subjects...
Abstract
Implant debris is known to cause local inflammation, local osteolysis, and, in some cases, local and systemic hypersensitivity. The debris can be stainless steel, cobalt alloy, and titanium alloy, and soluble debris obtained due to wear from all orthopedic implants. This article addresses the biologic aspects of implant debris, both locally and systemically. It describes debris-induced local effects, particle-induced proinflammatory responses, and debris-induced systemic effects. The article concludes with a discussion on the four systemic effects of implant debris, namely, neuropathic effects, hypersensitivity effects, carcinogenicity, and general toxicity.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006559
EISBN: 978-1-62708-290-7
..., with permission from Elsevier From this analysis, the general deposition process of a sample can be inferred. Figure 9 presents a single-bead multilayer structure deposition process diagram. The first layer on the substrate is deposited in a way similar to the laser cladding process, including the molten...
Abstract
Directed-energy deposition (DED) is a kind of additive manufacturing (AM) technology based on synchronous powder feeding or wire feeding. This article provides a comprehensive coverage of DED for ceramic AM, beginning with an overview of DED equipment setup, followed by a discussion on DED materials and the DED deposition process. The bulk of the article is devoted to the discussion on the microstructure and properties of oxide ceramics, namely alumina and zirconia ceramics.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005522
EISBN: 978-1-62708-197-9
... stratifies in the liquid ahead of the growth front ( Ref 10 , 11 ). The indium concentration stratifications and the growth front predicted by the cellular automaton finite-element (CAFE) model are illustrated in Fig. 3(b) ( Ref 12 ). Solutal convection during directional solidification is shown in Fig...
Abstract
For a wide range of new or better products, solidification processing of metallic materials from the melt is a step of uppermost importance in the industrial production chain. This article discusses the casting and solidification of molten metallic alloy along with the application of low-gravity platforms and facilities for solidification processing. It provides a description of dendritic growth studies and electromagnetic levitation. The article concludes with information on the in situ and real-time monitoring of solidification processing.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005209
EISBN: 978-1-62708-187-0
... ) published their important papers on a rigorous linear stability analysis. They showed that, taking into account the interface energy, the wavelength of the morphological instabilities could be determined. Furthermore, a new limit of stability, absolute stability, was predicted for high growth rates. From...
Abstract
One impressive example of plane front solidification (PFS) is the industrial production of large silicon single crystals, used mainly as substrates for integrated circuits. This article explores the PFS of a single phase, without taking convection into account. It discusses the solute build-up at the solid-liquid interface forming transients and steady state, the morphological stability/instability and perturbation theory, and rapid solidification effects, including solute trapping and oscillatory instabilities. The article presents a microstructural selection map that presents an overview of interface stability as a function of composition for a given alloy.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004027
EISBN: 978-1-62708-185-6
.... 1 as insight and accuracy. In fact, the first type of modeling illustrated on the extreme left did not consider microstructure directly, but from analysis of data on process variables and their effects on product attributes (dimensions, surface finish) and properties (strength, ductility, toughness...
Abstract
The systematic study of microstructural evolution during deformation under hot working conditions is important in controlling processing variables to achieve dimensional accuracy. This article explains the microstructural features that need to be modeled and provides an outline of the principles and achievements of each of the various microstructural models, including black-box modeling, gray-box modeling, white-box modeling, and hybrid modeling.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001755
EISBN: 978-1-62708-178-8
... Effect of temperature on time required for 20% cellular decomposition in U-0.75Ti. Example 2: Combined Geometric and Elemental Analysis of Particles Produced by Explosive Detonation<xref rid="a0001755-fn2" ref-type="fn">[2]</xref> As part of a study of the response of engineering components...
Abstract
This article describes the various steps involved in image analysis, including sample selection and preparation, image preprocessing, measurement, and data analysis and output. It reviews various types of image analyzers and explains how operator bias and poor sample selection and preparation practices can lead to measurement error. It also examines several applications, illustrating how microstructural measurements can be used to assess quality control and better understand how processing changes affect microstructure and, in turn, material properties and behavior.
1