Skip Nav Destination
Close Modal
Search Results for
cavitation test
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 312 Search Results for
cavitation test
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 October 2014
Fig. 14 Cavitation test results for treated vs. nontreated 316 stainless steel. Cavitation testing was performed in liquid mercury as the dense liquid medium, using a vibratory horn. Eight-fold reduction in weight loss for treated vs. nontreated specimens is shown. Source: Ref 2
More
Image
in Evaluating Erosion Corrosion, Cavitation, and Impingement
> Corrosion: Fundamentals, Testing, and Protection
Published: 01 January 2003
Image
in Evaluating Erosion Corrosion, Cavitation, and Impingement
> Corrosion: Fundamentals, Testing, and Protection
Published: 01 January 2003
Fig. 2 Examples of rotating disk and rotating arm erosion/cavitation test apparatuses. (a) Small, relatively low-speed rotating disk and jet apparatus. (b) Large, high-speed rotating arm spray apparatus. Source: Ref 5
More
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Fig. 23 Examples of rotating disk and rotating arm erosion: cavitation test apparatuses. (a) Small, relatively low-speed rotating disk and jet apparatus. (b) Large, high-speed rotating arm spray apparatus. Source: Ref 55
More
Image
Published: 31 December 2017
Fig. 28 Vibratory cavitation erosion test (ASTM G32) results to relate cobalt-base wrought alloys with comparable alloys. Test parameters: test temperature, 16 °C (61 °F); test medium, distilled water; frequency, 20 kHz; amplitude, 0.05 mm (0.002 in.). All samples were solution annealed
More
Image
Published: 01 January 2002
Fig. 4 Cavitation erosion: incubation stage of Ti-6Al-4V on vibratory cavitation test. Courtesy of CETIM
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
..., and gearboxes. It provides information on the cavitation resistance of materials and other prevention parameters. The article describes two American Society for Testing and Materials (ASTM) standards for the evaluation of erosion and cavitation, namely, ASTM Standard G 32 and ASTM Standard G 73. It concludes...
Abstract
This article considers two mechanisms of cavitation failure: those for ductile materials and those for brittle materials. It examines the different stages of cavitation erosion. The article explains various cavitation failures including cavitation in bearings, centrifugal pumps, and gearboxes. It provides information on the cavitation resistance of materials and other prevention parameters. The article describes two American Society for Testing and Materials (ASTM) standards for the evaluation of erosion and cavitation, namely, ASTM Standard G 32 and ASTM Standard G 73. It concludes with a discussion on correlations between laboratory results and service.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003669
EISBN: 978-1-62708-182-5
... Abstract Erosion, cavitation, and impingement are mechanically assisted forms of material degradation that often contribute to corrosive wear. This article identifies and describes several tests that are useful for ranking the service potential of candidate materials under such conditions...
Abstract
Erosion, cavitation, and impingement are mechanically assisted forms of material degradation that often contribute to corrosive wear. This article identifies and describes several tests that are useful for ranking the service potential of candidate materials under such conditions. The tests, designed by ASTM as G32, G73, G75, and G76, define specimen preparation, test conditions, procedures, and data interpretation. The article examines the relative influence of various test parameters on the incubation and intensity of cavitation, including temperature, pressure, flow velocity, and vibration dynamics. It concludes with a discussion on data correlations and the relationship between laboratory results and service expectations.
Image
Published: 01 August 2013
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006384
EISBN: 978-1-62708-192-4
... spherical bubbles when collapsing ( Ref 24 , 25 , 26 ). Laboratory Testing Methods Several types of laboratory devices have been developed to evaluate the resistance to cavitation erosion of materials such as rotating disks, vibratory devices, cavitating liquid jets, and high-speed cavitation...
Abstract
This article provides an overview of cavitation erosion with a specific focus on the estimation of mass loss. It describes the mechanisms of cavitation erosion and the types of laboratory devices to evaluate the resistance to cavitation erosion of materials. The laboratory devices include rotating disks, vibratory devices, cavitating liquid jets, and high-speed cavitation tunnels. The article discusses materials selection and surface protection to prevent cavitation erosion. It reviews the fluid-structure interaction that plays a role in cavitation erosion particularly for compliant materials. The article provides information on the numerical prediction of cavitation erosion damage by the finite element method (FEM).
Image
Published: 15 January 2021
erosion tester. Source: Ref 28 . Reproduced with permission from “Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets,” G 76, Corrosion of Metals; Wear and Erosion , Vol 03.02, Annual Book of ASTM Standards , ASTM International, 2019. (d) Cavitation-corrosion
More
Image
Published: 31 December 2017
Fig. 15 Mass loss curves for three different metallic alloys: aluminum alloy 7075, nickel-aluminum-bronze alloy C95400, and duplex stainless steel A2205. Mass loss tests were conducted in the LEGI cavitation erosion tunnel (see Fig. 9 ). Upstream pressure 40 bar, cavitation number 0.9
More
Image
Published: 01 January 1987
Fig. 1 Grain-boundary cavitation in iron. This is the mechanism by which metals typically fail when subjected to elevated temperatures and low strain rates. Composition, in parts per million: 70 C, 60 S, 54 O, 11 N, 40 P. Rod, 13 mm (0.5 in.) in diameter, was made by vacuum induction melting
More
Image
Published: 31 December 2017
Fig. 12 Typical histograms of pitting rate. Material is stainless steel A2205. The specimen was eroded in the LEGI cavitation erosion tunnel. Pitting test results for two different operating conditions corresponding to two different values of the upstream pressure are shown (10 and 20 bar
More
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005421
EISBN: 978-1-62708-196-2
... under uniaxial versus multiaxial tensile-stress conditions. Mesoscale models incorporate the influence of local microstructure and texture on cavitation. The article outlines the descriptions of cavity coalescence and shrinkage. It also describes the simulation of the tension test to predict tensile...
Abstract
This article focuses on the modeling and simulation of cavitation phenomena. It summarizes the experimental observations of cavitation and reviews the modeling of cavity nucleation and growth. The article discusses the modeling of the cavity growth based on mesoscale and microscale under uniaxial versus multiaxial tensile-stress conditions. Mesoscale models incorporate the influence of local microstructure and texture on cavitation. The article outlines the descriptions of cavity coalescence and shrinkage. It also describes the simulation of the tension test to predict tensile ductility and to construct failure-mechanism maps.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
.... , “Cyclic Plastic Strain Energy and the Fatigue of Metals,” STP 378, Internal Friction, Damping, and Cyclic Plasticity , ASTM , 1965 , p 45 – 84 11. “Standard Method of Vibratory Cavitation Erosion Test,” G 32, Annual Book of ASTM Standards , ASTM 12. Feltner C.E. and Beardmore...
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Image
Published: 31 December 2017
Fig. 18 Microhardness profiles in eroded samples for three different metallic alloys: aluminum alloy 7075, nickel-aluminum-bronze alloy C95400, and duplex stainless steel A2205. Mass loss tests were conducted in the LEGI cavitation erosion tunnel ( Fig. 9 ). Upstream pressure 40 bar
More
1