Skip Nav Destination
Close Modal
Search Results for
cavitation erosion testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 205 Search Results for
cavitation erosion testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 31 December 2017
Fig. 28 Vibratory cavitation erosion test (ASTM G32) results to relate cobalt-base wrought alloys with comparable alloys. Test parameters: test temperature, 16 °C (61 °F); test medium, distilled water; frequency, 20 kHz; amplitude, 0.05 mm (0.002 in.). All samples were solution annealed
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
..., and gearboxes. It provides information on the cavitation resistance of materials and other prevention parameters. The article describes two American Society for Testing and Materials (ASTM) standards for the evaluation of erosion and cavitation, namely, ASTM Standard G 32 and ASTM Standard G 73. It concludes...
Abstract
This article considers two mechanisms of cavitation failure: those for ductile materials and those for brittle materials. It examines the different stages of cavitation erosion. The article explains various cavitation failures including cavitation in bearings, centrifugal pumps, and gearboxes. It provides information on the cavitation resistance of materials and other prevention parameters. The article describes two American Society for Testing and Materials (ASTM) standards for the evaluation of erosion and cavitation, namely, ASTM Standard G 32 and ASTM Standard G 73. It concludes with a discussion on correlations between laboratory results and service.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003669
EISBN: 978-1-62708-182-5
... Abstract Erosion, cavitation, and impingement are mechanically assisted forms of material degradation that often contribute to corrosive wear. This article identifies and describes several tests that are useful for ranking the service potential of candidate materials under such conditions...
Abstract
Erosion, cavitation, and impingement are mechanically assisted forms of material degradation that often contribute to corrosive wear. This article identifies and describes several tests that are useful for ranking the service potential of candidate materials under such conditions. The tests, designed by ASTM as G32, G73, G75, and G76, define specimen preparation, test conditions, procedures, and data interpretation. The article examines the relative influence of various test parameters on the incubation and intensity of cavitation, including temperature, pressure, flow velocity, and vibration dynamics. It concludes with a discussion on data correlations and the relationship between laboratory results and service expectations.
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Fig. 23 Examples of rotating disk and rotating arm erosion: cavitation test apparatuses. (a) Small, relatively low-speed rotating disk and jet apparatus. (b) Large, high-speed rotating arm spray apparatus. Source: Ref 55
More
Image
in Evaluating Erosion Corrosion, Cavitation, and Impingement
> Corrosion: Fundamentals, Testing, and Protection
Published: 01 January 2003
Image
in Evaluating Erosion Corrosion, Cavitation, and Impingement
> Corrosion: Fundamentals, Testing, and Protection
Published: 01 January 2003
Fig. 2 Examples of rotating disk and rotating arm erosion/cavitation test apparatuses. (a) Small, relatively low-speed rotating disk and jet apparatus. (b) Large, high-speed rotating arm spray apparatus. Source: Ref 5
More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006384
EISBN: 978-1-62708-192-4
... spherical bubbles when collapsing ( Ref 24 , 25 , 26 ). Laboratory Testing Methods Several types of laboratory devices have been developed to evaluate the resistance to cavitation erosion of materials such as rotating disks, vibratory devices, cavitating liquid jets, and high-speed cavitation...
Abstract
This article provides an overview of cavitation erosion with a specific focus on the estimation of mass loss. It describes the mechanisms of cavitation erosion and the types of laboratory devices to evaluate the resistance to cavitation erosion of materials. The laboratory devices include rotating disks, vibratory devices, cavitating liquid jets, and high-speed cavitation tunnels. The article discusses materials selection and surface protection to prevent cavitation erosion. It reviews the fluid-structure interaction that plays a role in cavitation erosion particularly for compliant materials. The article provides information on the numerical prediction of cavitation erosion damage by the finite element method (FEM).
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... the correlation with cavitation-erosion rates in vibratory tests performed in conformance with ASTM G 32 ( Ref 11 ). It will be appreciated that erosion behavior is not simply related to any monotonic property such as true fracture stress or ultimate tensile stress, because the monotonic stress-strain curve does...
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006378
EISBN: 978-1-62708-192-4
... testing ( Ref 40 ) (as well as ASTM International standard method G32 for vibratory cavitation erosion testing, Ref 41 ) recommend that curves of cumulative mass loss versus time be shown in a test report, because any other parameters (for example, erosion rates) must be derived from that. For tabular...
Abstract
Liquid impingement erosion has been defined as progressive loss of original material from a solid surface due to continued exposure to impacts by liquid drops or jets. This article focuses on the core nature of erosion by liquid impingement, due to the greater appreciation of the distinctions between the different forms of erosion. It discusses steam turbine blade erosion, aircraft rain erosion, and rain erosion of wind turbine blades. The article describes the mechanisms of liquid impact erosion and time dependence of erosion rate. It reviews critical empirical observations regarding both impingement variables (velocity, impact angle, droplet size, and physical properties of liquids) and erosion resistance of materials, including the correlation between erosion resistance and mechanical properties and the effects of alloying elements and microstructure. The article also provides information on the ways to combat erosion.
Image
Published: 15 January 2021
erosion tester. Source: Ref 28 . Reproduced with permission from “Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets,” G 76, Corrosion of Metals; Wear and Erosion , Vol 03.02, Annual Book of ASTM Standards , ASTM International, 2019. (d) Cavitation-corrosion
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003631
EISBN: 978-1-62708-182-5
... frequent maintenance to ensure blade integrity. Fig. 21 Micrograph showing cracking of sectioned alloy Ti-6Al-4V fatigue specimen prefretted before fatigue testing. Arrows indicate branching crystallographic cracks. Cavitation Erosion and Water Drop Impingement Cavitation Erosion...
Abstract
Mechanically assisted degradation of metals is defined as any type of degradation that involves a corrosion mechanism and a wear or fatigue mechanism. This article provides a discussion on the mechanisms of five forms of degradation: erosion, fretting corrosion, fretting fatigue, cavitation and water drop impingement, and corrosion fatigue. It describes the factors affecting the severity of fretting corrosion. The article also illustrates the relationship between corrosion fatigue and stress-corrosion cracking.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005734
EISBN: 978-1-62708-171-9
..., erosive wear, adhesive wear, and surface fatigue. abrasive wear adhesive wear cavitation erosion coating erosive wear surface fatigue thermal spray coating wear resistance DURING THE DESIGN of many devices, such as gas turbines used in power generation and aerospace, compressors, pumps...
Abstract
The use of thermal spray coatings to restore worn surfaces has provided a significant improvement in surface performance due to improved wear resistance. This article discusses the general use of thermal spray coatings in reducing predominant types of wear, namely, abrasive wear, erosive wear, adhesive wear, and surface fatigue.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003242
EISBN: 978-1-62708-199-3
... to the surface, duration of exposure, temperature of the specimen and/or jet Particle velocity or flux distribution, density of particles, particle shape description, particle size distribution, particle composition Cavitation erosion Test geometry, frequency of moving body oscillation, temperature...
Abstract
Wear is mechanically-induced surface damage that results in the progressive removal of material. Because different types of wear occur in machinery, many different types of wear tests have been developed to evaluate its effects on materials and surface treatments. This article provides an explanation on mechanisms, forms (sliding, impact, and rolling) and the causes of wear. It describes the wear measuring methods, including the mass loss method, wear width method, and scar depth method. The units used to report wear vary with type of wear and with the purpose for which the data are to be used. Listing the considerations of tribosystem analysis, the article provides information on selection of ASTM wear test methods grouped by wear type. The article concludes by tabulating the testing geometries and parameters that are commonly controlled and reported when conducting wear tests.
Image
Published: 01 January 2002
Fig. 4 Cavitation erosion: incubation stage of Ti-6Al-4V on vibratory cavitation test. Courtesy of CETIM
More
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005730
EISBN: 978-1-62708-171-9
... coatings. It discusses the wear testing methodologies that are standardized by ASTM, including the pin-on-disk, block-on-ring, dry sand/rubber wheel, erosion, metallographic apparatus abrasion, fretting wear, cavitation, reciprocating ball-on-flat, impact, and rolling contact fatigue test. The article...
Abstract
This article describes the two commonly used standardized tests for determining the mechanical properties of thermal spray coatings: hardness testing and tensile adhesion testing. It discusses the destructive and non-destructive methods of residual-stress measurement. Electrochemical testing methodologies include two distinctly different methods: direct and alternating current impedance techniques for assessing the corrosion resistance of coating attributes. The article also reviews the testing methods for determining thermomechanical and environmental stability of thermal barrier coatings. It discusses the wear testing methodologies that are standardized by ASTM, including the pin-on-disk, block-on-ring, dry sand/rubber wheel, erosion, metallographic apparatus abrasion, fretting wear, cavitation, reciprocating ball-on-flat, impact, and rolling contact fatigue test. The article concludes with a discussion on the methods of testing abradability and erosion resistance in abradable coatings.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006390
EISBN: 978-1-62708-192-4
... 0.06 3 9 0.3 0.8 0.08 N Ultimet is resistant to corrosion in many aggressive environments, exhibits good pitting and crevice corrosion resistance, and has excellent wear properties, particularly against slurry erosion, cavitation erosion, and galling. MP159 R30159 bal 19 … 7 … 9 25.5...
Abstract
This article focuses on the tribological behavior of group 1, 2, and 3 cobalt-base alloys, namely, carbide-type wear-resistant alloys and laves-type wear-resistant alloys. The behavior includes hardness, yield strength and ductility, and fracture toughness. The article contains a table that lists the nominal compositions and typical applications of cobalt-base alloys. It discusses the properties and relative performance of specific alloys when subjected to the more common types of wear. These include abrasive wear, high-temperature sliding wear, rolling-contact fatigue wear, and erosive wear.
Image
Published: 31 December 2017
Fig. 15 Mass loss curves for three different metallic alloys: aluminum alloy 7075, nickel-aluminum-bronze alloy C95400, and duplex stainless steel A2205. Mass loss tests were conducted in the LEGI cavitation erosion tunnel (see Fig. 9 ). Upstream pressure 40 bar, cavitation number 0.9
More
Image
Published: 31 December 2017
Fig. 12 Typical histograms of pitting rate. Material is stainless steel A2205. The specimen was eroded in the LEGI cavitation erosion tunnel. Pitting test results for two different operating conditions corresponding to two different values of the upstream pressure are shown (10 and 20 bar
More
Image
Published: 31 December 2017
Fig. 18 Microhardness profiles in eroded samples for three different metallic alloys: aluminum alloy 7075, nickel-aluminum-bronze alloy C95400, and duplex stainless steel A2205. Mass loss tests were conducted in the LEGI cavitation erosion tunnel ( Fig. 9 ). Upstream pressure 40 bar
More
1