1-20 of 409 Search Results for

cavitation

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
... Abstract This article considers two mechanisms of cavitation failure: those for ductile materials and those for brittle materials. It examines the different stages of cavitation erosion. The article explains various cavitation failures including cavitation in bearings, centrifugal pumps...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005421
EISBN: 978-1-62708-196-2
... Abstract This article focuses on the modeling and simulation of cavitation phenomena. It summarizes the experimental observations of cavitation and reviews the modeling of cavity nucleation and growth. The article discusses the modeling of the cavity growth based on mesoscale and microscale...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006384
EISBN: 978-1-62708-192-4
... Abstract This article provides an overview of cavitation erosion with a specific focus on the estimation of mass loss. It describes the mechanisms of cavitation erosion and the types of laboratory devices to evaluate the resistance to cavitation erosion of materials. The laboratory devices...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003669
EISBN: 978-1-62708-182-5
... Abstract Erosion, cavitation, and impingement are mechanically assisted forms of material degradation that often contribute to corrosive wear. This article identifies and describes several tests that are useful for ranking the service potential of candidate materials under such conditions...
Image
Published: 01 January 2002
Fig. 4 Cavitation erosion: incubation stage of Ti-6Al-4V on vibratory cavitation test. Courtesy of CETIM More
Image
Published: 01 October 2014
Fig. 14 Cavitation test results for treated vs. nontreated 316 stainless steel. Cavitation testing was performed in liquid mercury as the dense liquid medium, using a vibratory horn. Eight-fold reduction in weight loss for treated vs. nontreated specimens is shown. Source: Ref 2 More
Image
Published: 01 August 2013
Fig. 31 Schematic diagram of cavitation jet testing apparatus. Source: Ref 32 More
Image
Published: 01 August 2013
Fig. 3 Turbine runner blades showing cavitation erosive failure. Source: Ref 5 More
Image
Published: 01 January 1990
Fig. 5 Cavitation erosion data on various cobalt-base alloys, Hastelloy alloy C-276, and 316L stainless steel More
Image
Published: 01 January 2005
Fig. 9 Nucleation of grain-boundary voids (cavitation) and triple-point cracks at warm and hot working temperatures. (a) Schematic illustration showing how grain-boundary voids are formed under the action of matrix deformation and how grain-boundary sliding in the absence of grain-boundary More
Image
Published: 01 January 2005
Fig. 18 Effect of stress state on cavitation. (a) Dependence of the void growth factor, D , on the ratio of the mean to effective stress ( σ m / σ ¯ ). Source: Ref 38 , Ref 39 . (b) Comparison of measured and predicted values of the ratio of the cavity growth parameter More
Image
Published: 01 January 2005
Fig. 27 Examples of cavitation. (a) In aluminum (Al-7475) alloy. Courtesy of A.K. Ghosh. (b) In titanium (Ti-6Al-4V) alloy. Source: Ref 37 More
Image
Published: 01 January 2002
Fig. 9 Impeller specimen showing cavitation damage and porous zones. (a) Cavitation pits (top-left arrow) and porous zones (bottom-right arrow) in an unetched transverse section of impeller 1. 2.5×. (b) Microsection from a cavitation zone. Etched with V2A reagent. 100×. Source: Ref 11 More
Image
Published: 01 January 2006
Fig. 8 Nucleate boiling-induced cavitation corrosion caused perforation at the exhaust valve port of this aluminum cylinder head. More
Image
Published: 01 January 2006
Fig. 9 Severe cavitation corrosion in an aluminum cylinder head exhaust port manifold More
Image
Published: 01 December 1998
Fig. 2 Cavitation erosion data on various cobalt-base alloys, Hastelloy alloy C-276, and 316L stainless steel More
Image
Published: 01 January 2002
Fig. 2 Wear surface by cavitation of copper-base alloy in a lubricated gearbox. Courtesy of CETIM More
Image
Published: 01 January 2002
Fig. 3 Wear surface of Al 2 O 3 after vibratory cavitation test. Courtesy of CETIM More
Image
Published: 01 January 2002
Fig. 5 Wear surface of 304 stainless steel after vibratory cavitation test. Courtesy of CETIM More
Image
Published: 01 January 2002
Fig. 6 Cavitation erosion of main bearing of diesel engine. Courtesy of CETIM More