Skip Nav Destination
Close Modal
By
Robert H. Heidersbach, James Brandt, David Johnson, John S. Smart, III, John S. Smart
Search Results for
cathodic protection
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 678 Search Results for
cathodic protection
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004114
EISBN: 978-1-62708-184-9
... Abstract This article describes two principal methods for detecting well casing corrosion, namely, metal-loss tools and casing current measurement, as well as their limitations and advantages. It discusses the factors to be considered in designing well casing cathodic protection systems...
Abstract
This article describes two principal methods for detecting well casing corrosion, namely, metal-loss tools and casing current measurement, as well as their limitations and advantages. It discusses the factors to be considered in designing well casing cathodic protection systems. These include the determination of cathodic protection current by the casing polarization and CPP tests or by mathematical models; calculation of casing-to-anode separation; isolation of the casing from other facilities; consideration of stray current interference from other dc power sources; and determination of the size and the location of the anode bed for effective current output for the desired life of the anode bed. The article concludes with a discussion on the commissioning and monitoring of cathodic protection systems.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004118
EISBN: 978-1-62708-184-9
... Abstract This article provides a detailed discussion on the various devices by which cathodic protection (CP) can be applied to pipe-type power transmission cables. These devices include the resistor rectifier, isolator-surge protector, polarization cells, and field rectifiers. The article...
Abstract
This article provides a detailed discussion on the various devices by which cathodic protection (CP) can be applied to pipe-type power transmission cables. These devices include the resistor rectifier, isolator-surge protector, polarization cells, and field rectifiers. The article describes the interference created by stray currents on CP and associated remedial actions.
Book Chapter
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004109
EISBN: 978-1-62708-184-9
... Abstract Cathodic protection (CP) is an electrochemical means of corrosion control widely used in the marine environment. This article discusses two types of CP systems: impressed current systems and sacrificial anode (passive) systems. It describes the anode materials used in these systems...
Abstract
Cathodic protection (CP) is an electrochemical means of corrosion control widely used in the marine environment. This article discusses two types of CP systems: impressed current systems and sacrificial anode (passive) systems. It describes the anode materials used in these systems and the CP criteria. The article examines the design considerations and procedures involved in the CP of marine pipelines, offshore structures, and ship hulls. An illustration of sacrificial anode calculation is also provided.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003697
EISBN: 978-1-62708-182-5
... Abstract Cathodic protection is an electrochemical means of corrosion control in which the oxidation reaction in a galvanic cell is concentrated at the anode, which suppresses corrosion of the cathode in the same cell. This article provides a detailed discussion on the fundamentals and types...
Abstract
Cathodic protection is an electrochemical means of corrosion control in which the oxidation reaction in a galvanic cell is concentrated at the anode, which suppresses corrosion of the cathode in the same cell. This article provides a detailed discussion on the fundamentals and types of cathodic protection as well as their power sources and design considerations. The criteria for the cathodic protection and types of materials used in sacrificial anodes and impressed-current anodes are also discussed. The article provides examples selected for familiarizing the design engineer with the steps for selecting a specific corrosion control method.
Image
Published: 01 August 2013
Image
Published: 30 September 2015
Image
Published: 30 September 2015
Image
Published: 01 January 2006
Fig. 9 Thermoelectric generator used to power cathodic protection systems in remote locations. Source: Ref 50
More
Image
Published: 01 January 2006
Fig. 10 Typical cathodic protection installations. (a) Impressed current. (b) Sacrificial anode
More
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Fig. 28 Effect of cathodic protection on the fatigue performance of alloy steel in seawater. Tests performed on 6.4 mm ( 1 4 in.) diam specimens at a mean stress of 425 MPa (69 ksi)
More
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Fig. 36 Electrical circuit analog of reinforced-concrete cathodic protection system components. (a) Anode is embedded or affixed to structure. (b) Anodes installed remote from the reinforced-concrete structure. ICCP, impressed-current cathodic protection; T/R, transformer/rectifier
More
Image
Published: 01 January 2006
Fig. 37 System components for cathodic protection. (a) Impressed current. (b) Sacrificial or galvanic system
More
Image
Published: 01 January 2006
Fig. 38 Evans diagram for the application of a galvanic cathodic protection (CP) system. Note: Log current is the absolute value of the current density, where both the anodic and cathodic currents are plotted as positive values. See the text for description.
More
Image
Published: 01 January 2006
Fig. 40 Cathodic protection (CP) of reinforcement can lead to repassivation of the rebar when chloride ions migrate from rebar and/or realkalization of the concrete surrounding the rebar occurs. Under these conditions, the CP can be removed. The rebar will depolarize and return to passive
More
1